
User Guide
/ Java Agents 5.7

Latest update: 5.7

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide to installing and managing ForgeRock® Access Management Java agents.
ForgeRock Access Management provides open source authentication, authorization,
entitlement, and federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Introducing Java Agents .. 1

Java Agent Components .. 1
Configuration ... 2
Request Process Flow ... 4
Java Agent Features .. 8

2. Preparing for Installation .. 22
Downloading and Unzipping Java Agents ... 22
Configuring AM Servers to Communicate With Java Agents 23
Creating Agent Profiles ... 25
Supporting Load Balancers and Reverse Proxies Between AM and the Agents 27

3. Configuring Environments With Load Balancers and Reverse Proxies 29
Regarding Communication Between AM and Agents .. 31
Regarding Communication Between Clients and Agents 33

4. Installing Java Agents .. 40
Installing the Tomcat Java Agent ... 40
Installing the JBoss Java Agent .. 47
Installing the Jetty Java Agent ... 54
Installing the WebLogic Java Agent ... 61
Installing the WebSphere Java Agent .. 69

5. Post-Installation Tasks ... 78
Configuring the Agent Filter ... 78
Configuring Audit Logging .. 81
Configuring Performance Monitoring .. 84
Configuring Java Agents for SSL Communication .. 86
Supporting Load Balancers and Reverse Proxies Between Clients and Agents 88

6. Upgrading Java Agents .. 89
7. Removing Java Agents ... 91

Removing the Tomcat Java Agent .. 91
Removing the JBoss Java Agent ... 92
Removing the Jetty Java Agent .. 94
Removing the WebLogic Java Agent .. 95
Removing the WebSphere Java Agent .. 97

8. Troubleshooting ... 100
9. Reference .. 103

Configuring Java Agent Properties ... 103
Configuring Agent Authenticators .. 207
Monitoring Reference .. 207
Command-Line Tool Reference .. 229
Configuring Apache HTTP Server as a Reverse Proxy Example 232
Implementing Custom Task Handlers .. 234

Glossary ... 240

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

Preface
This guide shows you how to install ForgeRock Access Management Java agents, as well as how to
integrate with ForgeRock Access Management. Read the Release Notes before you get started.

This guide is written for anyone installing Java agents to interface with supported Java web
application containers.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing Java Agents
Java Agent Components

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing Java Agents
A Java agent is an Access Management add-on component that operates as a Policy Enforcement
Point (PEP) or policy agent for applications deployed on a Java container.

Java agents intercept inbound requests to applications. Depending on the filter mode configuration,
Java agents interact with AM to:

• Ensure that clients provide appropriate authentication.

• Enforce AM resource-based policies.

This chapter covers how Java agents work and how their features can protect your applications.

• "Java Agent Components"

• "Configuration"

• "Request Process Flow"

• "Java Agent Features"

Java Agent Components
Java agents comprise two main components; the agent filter and the agent application:

• Agent Filter. Intercepts inbound client requests to a resource and processes them based on the
filter mode of operation.

• Agent Application. Deployed as agentapp.war, it is required for authentication and the cross-domain
single sign-on (CDSSO) flow.

The following components are not strictly part of the Java agent, but they play an important part in
the agent's operation:

• AM SDKs. Provide a set of APIs required to interact with AM.

• Agent Profile. Contains a set of configuration properties that define the agent's behavior. The agent
profile can be stored in AM's configuration store or as a text file local to the agent installation.

The following picture illustrates the Java agent's components when the agent profile is stored in the
AM configuration store:

Introducing Java Agents
Configuration

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

Java Agent Main Components

Java

container
Access

Management

Request to
protected application

Services

Authentication

Authorization

…

Java

application

Clients

Agent profile
AM

SDK

Agent filter

and

applicat ion

1

2
3

4

7

8

5

6

Configuration
On startup, the Java Agent reads its configuration from the bootstrap properties file
OpenSSOAgentBootstrap.properties.

The agent finds the location of the bootstrap file from a property added to JAVA_OPTS. For example,
in Tomcat, it can take the file location from bin/setenv.sh as follows:
JAVA_OPTS="$JAVA_OPTS -Dopenam.agents.bootstrap.dir=/path/to/java_agents/java_agent/tomcat_agent/config"

The Agent has two modes of operation, LOCAL and REMOTE, which determine the location of the
agent configuration. The mode is defined by the property Configuration Repository, as follows:

Introducing Java Agents
Bootstrap Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

• LOCAL mode, org.forgerock.agents.config.location=LOCAL

The Agent reads its configuration from OpenSSOAgentConfiguration.properties, found in the same
directory as OpenSSOAgentBootstrap.properties.

Depending on the settings you add to the configuration file (for example, if org.forgerock.agents.
fallback.mode.enabled is enabled), the Agent might never need to contact AM.

While the Agent is in LOCAL mode, it ignores any changes made to the Agent profile within AM.

• REMOTE mode, org.forgerock.agents.config.location=REMOTE

This is default mode; you don't need to explicitly specify it.

When the first user request is made, the Agent contacts AM to retrieve the Agent configuration.
The Agent ignores the configuration in OpenSSOAgentConfiguration.properties, and any changes made to
it.

The Agent waits until the first user request before it contacts AM, so that AM does not have to be
available when the Agent is started. This causes a delay on the first request, but not on subsequent
requests.

If AM is unavailable, the request returns an HTTP 403 Permission denied. The message written to the
debugging logs depends on your logging level.

Bootstrap Properties
The Agent expects bootstrap information on startup in order to contact AM, even if the Agent
configuration dictates that the Agent never contacts AM

The following properties are required, and provided by the installer during installation:

• AM Private URL

Used by the Agent for direct communication with AM, for example, to retrieve policy information or
user information. The URL is assembled from the following properties:

• AM Protocol (org.forgerock.agents.am.protocol)

• AM Host (org.forgerock.agents.am.hostname)

• AM Port (org.forgerock.agents.am.port)

• AM Path (org.forgerock.agents.am.path)

• Java Agent's profile name (org.forgerock.agents.profile.name)

• Java Agent's profile realm (org.forgerock.agents.profile.realm)

• Java Agent's profile password (org.forgerock.agents.encrypted.password)

Introducing Java Agents
Changing configuration Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

• Encryption key used for the profile password (am.encryption.pwd)

The following property is optional, but must be provided by the user if the AM firewall rules
distinguish between public and private URL.

• AM Public URL (org.forgerock.agents.public.am.url)

Used by the Agent to redirect the user's browser to public facing URLs for login. If not provided,
the AM private URL is used.

Changing configuration Properties

Change the agent configuration in the following ways:

• Changing Agent bootstrap configuration

To change bootstrap properties, manually edit OpenSSOAgentBootstrap.properties, and then restart the
container running the Java Agent.

• Changing Agent configuration in LOCAL mode

The OpenSSOAgentConfiguration.properties is used only in LOCAL mode to set Agent configuration
properties. To update properties in LOCAL mode, manually edit the configuration file, and set a
value for Configuration Reload Interval.

The interval defines the number of seconds after which the Java Agent reads the local property file,
and reloads it if has changed since it was last read.

• Changing Agent configuration in REMOTE mode

In the default REMOTE mode, the Agent is notified by the WebSocket mechanism when its
configuration is changed in AM. The Agent then re-reads its configuration from AM within a few
seconds.

To change the Agent configuration in the AM console, go to Realms > Realm Name > Applications
> Agents > Java > Agent Name.

Request Process Flow
Suppose you wanted to withdraw money from your bank account using an ATM. The ATM would not
allow you to access your account unless you identified yourself to the bank with your card and PIN
number. For a joint account, you may also require additional authorization to access the funds.

Java agents work on a similar premise. When a client requests access to an application resource,
the Java agent intercepts the request. Then, AM validates the identity of the client as well as their
authorization to access the protected resource.

Introducing Java Agents
Request Process Flow

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

The following sequence diagram shows the flow that occurs when an unauthenticated client requests
a resource protected by a Java agent and AM. The diagram assumes that the filter mode is set to ALL
and is simplified 1 to show only the relevant steps in the flow.

1For a detailed diagram, see Single Sign-On in the ForgeRock Access Management Authentication and Single Sign-On Guide.

../../../am/7/authentication-guide/about-sso.html

Introducing Java Agents
Request Process Flow

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

Java Agent Process Flow

Java Agent Process Flow

Java Cont a iner

Client

Client

Agent Filter/
Agent Applicat ion

Agent Filter/
Agent Applicat ion

Web Resource

Web Resource

Access Managem ent

Access Managem ent

1 Request to ht tp://www.exam ple.com
intercepted by agent filter

2 Check not -enforced lists

alt [Resource or client IP m at ches not -enforced list s]

3 Pass through

4 Response from ht tp://www.exam ple.com

5 Redirect to AM login page
for authent icat ion

6 Client authent icates

7
Verify credent ials
and create valid
OIDC JWT

8 Send self-subm it t ing form
with OIDC JWT

9 Post form to the agent 's endpoint ,
which consum es the response

1 0 Set cookie dom ain to
FQDN of resource

1 1 Redirect to ht tp://www.exam ple.com
intercepted by agent filter

1 2 Request OIDC JWT
validat ion

1 3 OIDC JWT is OK

1 4 Request policy decision

1 5 Policy decision is
"ALLOW"

1 6 Log policy decision

1 7 Pass through

1 8 Response from
ht tp://www.exam ple.com

Introducing Java Agents
Request Process Flow

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

1. An unauthenticated client attempts to access a resource at www.example.com. The agent filter
intercepts the inbound request.

2. Java agents evaluate whether the requested resource or the client IP address matches any rule
contained in the not-enforced lists.

3. Alternate Flow. The requested resource or the client IP address matches a not-enforced rule. The
Java agent allows access to the resource.

4. Alternate Flow. The client receives a response from www.example.com. The flow ends.

5. The requested resource or the client IP address does not match a not-enforced rule. The Java
agent redirects the client to log in to AM.

6. The client authenticates to AM.

During client authentication, and to protect against reply attacks, the agent issues a pre-
authentication cookie, whose name is configured in the Authentication Tracking Cookie
Name property (org.forgerock.agents.authn.cookie.name). The agent uses this cookie to track the
authentication request to AM.

Depending on the configuration, the agent may either issue a cookie to track all concurrent
authentication requests, or may issue one cookie for each request.

7. AM's Authentication Service verifies the client's credentials and creates a valid OpenID Connect
(OIDC) JSON Web Token (JWT) with session information.

8. AM sends the client a self-submitting form with the OIDC JWT.

9. The client posts the self-submitting form to the agent's endpoint, and the Java agent consumes it.

10. The Java agent sets the cookie domain to the FQDN of the resource.

11. The client attempts to access the protected resource again, and the Java agent filter intercepts
the request.

12. The Java agent contacts AM to validate the session contained in the OIDC JWT.

13. AM validates the session.

14. The Java agent contacts AM's Policy Service, requesting a decision about whether the client is
authorized to access the resource.

15. AM's Policy Service returns ALLOW.

16. The Java agent writes the policy decision to the audit log.

17. The Java agent enforces the policy decision. Since the Policy Service returned ALLOW, the Java
agent performs a pass-through operation to return the resource to the client.

18. The client accesses the resource at www.example.com.

Introducing Java Agents
Java Agent Features

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

Java Agent Features
Java agents provide a number of features to help you protect your applications. The following table
contains a list of the features and the sections were you can have more information about each one:

• "Not-Enforced Lists"

• "Notification System"

• "Continuous Security"

• "Attribute Fetch Modes"

• "Autonomous "Fallback" Mode"

• "Login Attempt Limits"

• "FQDN Checking"

• "Cookie Reset Properties"

• "Cross-Domain Single Sign-On"

• "POST Data Preservation"

• "Redirection and Conditional Redirection"

• "Caching Capabilities"

• "Query Parameter Handling"

• "Authentication Failure Notification"

Not-Enforced Lists

Java agents provide the capability to bypass authentication and grant immediate access to resources
not requiring protection, thus speeding up agent operation.

You can configure different lists of not-enforced rules depending on the needs of your deployment:

• Not-Enforced URI Lists

Configure not-enforced URI lists to allow access to resources, such as images, stylesheets, or the
HTML pages that comprise the public front end of your site.

• Not-Enforced IP Lists

Configure not-enforced IP lists to allow access to your site from an administrative IP address, an
internal network range, or a search engine.

Introducing Java Agents
Not-Enforced Lists

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

• Compound Not-Enforced URI and IP Lists

Configure compound URI and IP not-enforced lists when you require more control over access.

To evaluate access, the Java agent constructs a list of compound rules, a list of simple URI rules, and
a list of simple IP rules. The lists are evaluated in the following order:

1. Compound rules in both Not-Enforced URIs and Not-Enforced Client IP List properties

2. IP rules in the Not-Enforced Client IP List property

3. URI rules in the Not-Enforced URIs property

The first time the Java agent receives a request for a resource, it needs to evaluate if the request
is for a protected resource or for a not-enforced resource. To make this decision, the agent tries to
match the request with the patterns specified in the not-enforced lists.

The Java agent evaluates every rule in the lists in order until it finds the first match. It does not
process any other rule, even though a rule further down the list might provide a better match.
Because of this, place your most specific rules at or near the beginning of the list.

To speed up future requests, the Java agent caches whether the resource hit or miss any not-enforced
rule. Therefore, if a request for the same resource reaches the agent again, the agent checks the
result of the rules evaluation in the cache instead of running the rules again.

If no rule matches, the Java agent decides whether to grant access or defer to AM based on the
configuration of the Invert Not-Enforced IPs and the Invert Not-Enforced URIs properties. See the
following table for an analysis of the possibilities.

Not-Enforced Default Access for Non-Matching Requests

 Not-Enforced Client IP
List Property

Not-Enforced URIs Property Outcome

Inverted? No No Defer to AM
Inverted? Yes Yes Grant access
Inverted? Yes No Defer to AM
Inverted? No Yes Defer to AM

In the preceding table, if the Not-Enforced Client IP List and Not-Enforced URIs properties are not
inverted (the Not-Enforced IP Invert List and Invert Not-Enforced URIs properties are set to false),
the Java agent defers any unmatched request to AM for authorization.

Not-Enforced lists support wildcards, regular expressions, and the possibility of specify HTTP
methods for fine-tuning the rules.

For more information about configuring not-enforced lists and other related properties, see Not-
Enforced URI Processing Properties.

Introducing Java Agents
Notification System

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

Notification System

AM can notify Java agents of configuration and session state changes through WebSockets. Java
agents can subscribe to up to three notification feeds:

• Configuration Notifications. When the administrator makes a change to a hot-swappable Java agent
configuration property, AM sends a notification to the agent to reread the agent profile from AM.

Configuration notifications are applicable when you store the agent profile in AM's configuration
data store. For more information about enabling configuration notifications, see "Profile
Properties".

• Session Notifications. When a client logs out or a CTS-based session expires, AM sends a
notification to the Java agent to remove that entry from the session cache. For more information
about enabling session notifications, see Session Client Service Properties.

• Policy Notifications. When an administrator changes a policy, AM sends a notification to the Java
agent to flush the policy cache. For more information about enabling policy notifications, see Policy
Client Service Properties.

The AM advanced server configuration property, org.forgerock.openam.notifications.agents.enabled,
controls whether the AM server sends notifications to connected Java agents. This property is
enabled by default.

Enabling notifications affects the validity of the Java agent caches. For more information, see
"Caching Capabilities".

Note

Ensure that load balancers and reverse proxies configured in your environment support WebSockets.

Continuous Security

Because Java agents are the first point of contact between users and your business applications,
they can collect inbound login requests' cookie and header information which an AM server-side
authorization script can then process.

For more information about configuring continuous security properties, see Continuous Security
Properties.

Attribute Fetch Modes

Java agents provide the capability to fetch and inject user information into HTTP headers, request
objects, and cookies and pass them on to the protected client applications. The client applications can
then personalize content using these attributes in their web pages or responses.

../../../am/7/authorization-guide/scripted-policy-condition.html
../../../am/7/authorization-guide/scripted-policy-condition.html

Introducing Java Agents
Autonomous "Fallback" Mode

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

Specifically, you can configure the type of attributes to be fetched and the associated mappings for
the attributes names used on AM to those values used in the containers. The Java agent securely
fetches the user and session data from the authenticated user as well as policy response attributes.

For more details, see Session Attributes.

Autonomous "Fallback" Mode

You can start the Java agents in an autonomous "fallback" mode, which operates entirely
independently, without having to contact an AM instance. In fallback mode, the agents allow access
as defined in configured not-enforced lists; otherwise, access is denied.

In fallback mode, the agents evaluate not-enforced rules that use the following features:

• URLs, IP addresses, IP address ranges, and compound rules.

• Rules applied to specific HTTP methods.

• Inverted not-enforced rules, by using properties.

• Inverted not-enforced rules, by using inline logical operators.

• Rules that use regular expressions.

• Rules applied in the presence of named cookies with specified values.

Because the agent does not attempt to contact AM, the following functionality will not be available in
fallback mode:

• Notifications

• Remote auditing

• Profile attributes

• Session attributes

• Response attributes

• Continuous security

To enable fallback mode, in the /path/to/java_agents/agent_type/agent_instance/config/
OpenSSOAgentBootstrap.properties bootstrap properties file, set org.forgerock.agents.fallback.mode.
enabled=true, and restart the Java container where the agent is installed.

Introducing Java Agents
Login Attempt Limits

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

Important

The agent must be configured for Local configuration, as there will be no attempt to contact AM when starting
in fallback mode.

Login Attempt Limits

When the client does not present a valid SSO token, the Java agent will redirect the user to the login
URL configured in AM. The Java agent can be configured to limit the login attempts made to the Java
agent to mitigate any redirect loops that may result in an error page presented to the end-user.

You can use the Login Attempt Limit property to specify a non-zero value for the number of login
attempts. For example, if the property is set to 3, then the Java agent will block the access request to
the protected resource on the fourth login request.

You can also limit the number of redirections the Java agent can take for a single browser session by
setting the Redirect Attempt Limit.

For more details, see "General Properties".

FQDN Checking

Java agents require that clients accessing protected resources use valid URLs with fully qualified
domain names (FQDNs). If invalid URLs are referenced, policy evaluation can fail as the FQDN will
not match the requested URL, leading to blocked access to the resource. Misconfigured URLs can
also result in incorrect policy evaluation for subsequent access requests.

There are cases where clients may specify resource URLs that differ from the FQDNs stored in AM
policies; for example, in load balanced and virtual host environments. To handle these cases, the Java
agent supports FQDN Checking properties: FQDN Default and FQDN Virtual Host Map properties.

The FQDN Default property specifies the default URL with valid hostname. The property ensures that
the Java agent can redirect to a URL with a valid hostname should it discover an invalid URL in the
client request.

The FQDN Virtual Host Map property stores map keys and their corresponding values, allowing invalid
URLs, load balanced URLs, and virtual host URLs to be correctly mapped to valid URLs. Each entry in
the Map has precedence over the FQDN Default setting, so that if no valid URLs exist in the FQDN Virtual
 Host Map property, the Java agent redirects to the value specified in the FQDN Default property.

If you want the Java agent to redirect to a URL other than the one specified in the FQDN Default
property, then it is good practice to include any anticipated invalid URLs in the FQDN Virtual Host Map
property and map it to a valid URL.

For more details, see "Fully Qualified Domain Name Checking Properties".

Introducing Java Agents
Cookie Reset Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

Cookie Reset Properties

AM provides cookie reset properties that the Java agent carries out prior to redirecting the client to a
login page for authentication.

Cookie reset is typically used when multiple parallel authentication mechanisms are in play with the
Java agent and another authentication system. The Java agent can reset the cookies set by the other
mechanism before redirecting the client to a login page.

The cookie reset properties include a name list specifying all of the cookies that will reset, a domain
map specifying the domains set for each cookie, and a path map specifying the path from which the
cookie will be reset.

If you have enabled attribute fetching using cookies to retrieve user data, it is good practice to use
cookie reset, which will reset once you want to access an enforced URL without a valid session.

For more details, see Cookie Reset Properties.

Cross-Domain Single Sign-On

Cross-domain single sign-on (CDSSO) is an AM capability that lets users access multiple independent
services from a single login session, using the Java agent to transfer a validated session ID on a single
DNS domain or across domains.

Without AM's CDSSO, single sign-on cannot be implemented across domains; the session cookie from
one domain would not be accessible from another domain. For example, in a configuration where the
AM server (openam.example.com) is in a different DNS domain than the Java agent (myapp.website.com),
single sign-on would not be possible.

Java agents work in CDSSO mode by default, regardless of the DNS domain of the AM servers and
the DNS domain of the agents.

For more information and implementation details, see Single Sign-On and Implementing CDSSO in
the ForgeRock Access Management Authentication and Single Sign-On Guide.

POST Data Preservation

Java agents can preserve HTML form data submitted as an HTTP POST by unauthenticated clients.

At a high level, when an unauthenticated client posts HTML form data to a protected resource, the
Java agent stores the data in its cache and redirects the client to the login screen. Upon successful
authentication, the agent recovers the data stores in the cache and autosubmits it to the protected
resource.

Consider enabling POST data preservation if users or clients in your environment submit large
amounts of data, such as blog posts and wiki pages, and their sessions are short-lived.

Java agents guarantee the integrity of the data and the authenticity of the client as follows:

../../../am/7/authentication-guide/about-sso.html
../../../am/7/authentication-guide/about-sso.html#implementing-cdsso

Introducing Java Agents
Redirection and Conditional Redirection

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

• Each unauthenticated form POST to a protected resource generates a random unique identifier as
the dummy internal endpoint from which the client recovers the POST data after authentication.
This identifier is then placed into an encrypted cookie and provided to the client.

• During authentication, the client is provided with a one-time code placed in a different cookie that
is also stored with the POST data in the cache. If the client cannot provide the code (because the
cookie is missing) or the code differs from the one stored with the POST data, the Java agent denies
access to the endpoint.

To mitigate against DoS attacks, manage the time the data lives in the cache and the size of the cache
itself, either by limiting the total number of entries it can hold or the total size of the data held.

For more information about the POST data preservation cache and its properties, see "Caching
Capabilities" and "POST Data Preservation Properties".

Redirection and Conditional Redirection

Java agents provide the capability to redirect users to a specific AM instance, an AM site, or a
website other than AM. You can also redirect users based on the incoming request URL. Conditional
redirection is available for login and logout requests.

For example, you can configure the Java agent such that any login request made from the france.
example.com domain is redirected to the openam.france.example.com AM site. You can also configure the
Java agent to redirect any user to a specific page after logout.

You may also decide to configure conditional login redirection to specify the realm to which users
must authenticate.

Java agents support the following redirection modes:

• Default Redirection Login Mode mode

• Custom Redirection Login Mode mode

Default Redirection Login Mode

By default, Java Agents 5.x and AM use OpenID Connect (OIDC) JSON web tokens (JWT) for
authentication. Unauthenticated users are redirected to the oauth2/authorize endpoint. This endpoint
invokes both the XUI and other endpoints within AM, such as:

• oauth2/authorize

• json/authenticate

• json/sessions

• json/serverinfo

Introducing Java Agents
Redirection and Conditional Redirection

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

• XUI/*

Unauthenticated users must be able to reach, at least, AM's oauth2/authorize endpoint.

When configuring the default redirection login mode, consider the following points:

• Ensure that the Allow Custom Login Mode property is set to false.

• Configure the following property:

• OAuth 2.0 Login List

For more information, see Login URL Properties.

• The login flow is as follows:

1. The agent receives a request to access a page from an unauthenticated user.

2. The agent matches the request with the domains and URLs specified by the OAuth 2.0 Login
List property, and redirects the user to the appropriate custom login page.

During the redirection process, the agent appends a number of OIDC parameters to the
request2.

3. The user logs in to the custom login page.

4. The custom login page redirects back to the agent and provides, at least, the OIDC parameters
appended during the redirection process.

5. The agent contacts AM to log the user into the appropriate realm.

Custom Redirection Login Mode

Java Agents support a custom login redirection mode by configuring the custom login mode property
Allow Custom Login Mode.

When this property is set to true, the agent expects the custom login page to set an SSO token in the
user's browser after authentication. The agent will present the SSO token to AM, which would then
convert it into an OIDC JWT.

Use the custom redirection login mode when:

• Your environment has customized login pages that expect user sessions to be stored in SSO tokens
instead of in OIDC JWTs.

• Your environment is configured so the users cannot access the AM servers directly.

• Your environment is configured so the custom login pages are not part of AM's XUI.
2For more information, see the implementation details included in the OpenAM Conditional Login URL property.

Introducing Java Agents
Redirection and Conditional Redirection

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

Note

You should use the default redirection login mode when designing new environments. The custom redirection
login mode is meant as an aid to support environments upgrading from earlier versions of the agents.

When configuring the custom redirection login mode, consider the following points:

• Ensure that the Allow Custom Login Mode property is set to true.

• Configure the public AM URL in the org.forgerock.agents.public.am.url bootstrap property if the
custom pages are in a network that can only access AM using a proxy, a firewall, or any other
technology that remaps the AM URL to one accessible by the custom login pages.

Consider an example where the traffic between AM and the agent happens through the example-
internal.com network, but the custom login pages are on the example-external.com domain. In this
case, you would configure https://openam.example-external.com:8443/openam as the public AM
URL.

• Configure one of the following properties:

• OpenAM Login URL (com.sun.identity.agents.config.login.url)

• org.forgerock.agents.legacy.login.url.list

For more information, see Login URL Properties.

• The login flow is as follows:

1. The agent receives a request to access a page from an unauthorized user.

2. The agent checks the custom login redirection mode properties:

• If configured, the agent redirects the user to the custom login page specified by the OpenAM
Login URL property.

The agent appends a resourceURL parameter to the login endpoint.

• If not configured, the agent matches the request with the domains and URLs specified by the
org.forgerock.agents.legacy.login.url.list property, and redirects the user to the appropriate
custom login page.

During the redirection process, the agent appends a goto parameter and a nonce to the request.

3. The user logs in to the custom login page.

4. The custom login page sets an SSO token in AM's session cookie (by default, iPlanetDirectoryPro)
in the user's browser and redirects back to the agent using the goto parameter provided.

If the agent is unable to access AM's session cookie, or if the session cookie contains an invalid
SSO token, the login process will fail.

Introducing Java Agents
Caching Capabilities

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

5. The agent contacts AM to log the user in to the appropriate realm and convert the SSO token
into an OIDC JWT.

Caching Capabilities
Java agents allocate memory from the Java heap space in the web container to the following caches:

Configuration Cache

When a Java agent with centralized configuration starts up, it makes a call to AM to retrieve a
copy of the Java agent profile and stores it in the cache. The information stored in the cache is
valid until one of the following events occurs:

• AM notifies the Java agent of changes to hot-swappable Java agent configuration properties.
The agent flushes the configuration cache and rereads the agent profile from AM.

• The Java agent restarts.

• The Java agent rereads the configuration from AM or from local files at the frequency specified
by the com.sun.identity.agents.config.load.interval property.

If notifications and the com.sun.identity.agents.config.load.interval property are disabled, cached
configuration remains valid until the Java agent restarts.

Session Cache

After authentication, AM presents the client with a JWT containing session information. The agent
stores part of that session information in the cache. A session stored in the session cache is valid
until one of the following events occurs:

• The session contained in the JWT expires.

• The client logs out from AM, and session notifications are enabled.

• The session reaches the expiration time specified by the org.forgerock.openam.agents.config.
active.session.cache.ttl.minutes property.

Policy Decision Cache

When a client attempts to access a protected resource, the Java agent checks whether there is a
policy decision cached for the resource:

• If the client's session is valid, the Java agent requests a policy decision from AM and then
enforces it.

• If the client's session is not valid, the Java agent redirects the client to AM for authentication
regardless of why the session is invalid. The agent does not specify the reason why the client
needs to authenticate.

Once the client authenticates, the Java agent requests policy decision to AM and enforces it.

Introducing Java Agents
Caching Capabilities

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

Policy decisions are valid in the cache until one of the following events occur:

Session and Policy Validity in Cache

Event What is invalidated?
Session contained in the JWT expires Session and policy

decisions related to the
session

Client logs out from AM (and session notifications are enabled) Session and policy
decisions related to the
session

Policy decision reaches the expiration time specified by the com.sun.identity.
agents.polling.interval property

Policy decision

Administrator makes a change to policy configuration (and policy notifications are
enabled)

All sessions and all policy
decisions

Important

A Java agent that loses connectivity to AM cannot request policy decisions. Therefore, the Java agent
denies access to inbound requests that do not have a policy decision cached until the connection is
restored.

Not-Enforced Lists Hit and Miss Caches

The first time the Java agent receives a request for a resource, it matches the request and the
client's IP address against the rules specified in the not-enforced lists.

Java agents maintain a hit cache and a miss cache for each of the not-enforced lists specified
in "Not-Enforced Lists". To speed up future requests, the agent stores whether the resource hit
or missed not-enforced rules in the corresponding caches. Therefore, if a request for the same
resource reaches the agent again, the agent replays the result of the rules' evaluation stored in
the caches instead of re-evaluating the request.

Entries stored in the hit and miss caches do not expire unless AM notifies the agent about
configuration changes in the not-enforced lists properties.

For more information about not-enforced cache lists, see "Not-Enforced Lists", Not-Enforced URI
Processing Properties, and Not-Enforced IP Processing Properties.

POST Data Preservation Cache

When POST data preservation is enabled, the Java agent caches HTML form data submitted as an
HTTP POST by unauthenticated clients.

The POST data expires either when the client recovers the information from the cache or after
the time interval specified by the com.sun.identity.agents.config.postdata.preserve.cache.entry.ttl
property.

Introducing Java Agents
Query Parameter Handling

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

For more information about POST data preservation and its properties, see "POST Data
Preservation" and "POST Data Preservation Properties".

OpenID Connect JSON Web Token (JWT) Cache

Decoding JWTs into JSON objects is a CPU-intensive operation. To reduce the amount of
processing required on each request, Java agents cache decoded JWTs.

When a Java agent receives a request for a resource, it passes the JWT through a fast hashing
algorithm that creates a 128-bit hash unique for that JWT. Then the agent determines if the hash
is in the JWT cache. One of the following scenarios occur:

• The hash is in the cache. The Java agent retrieves the decoded JWT from the cache and
continues processing the request.

• The hash is not in the cache. The Java agent decodes the JWT and stores it and its hash in the
cache. Then it continues processing the request.

JWTs in the cache expire after the time interval specified by the org.forgerock.openam.agents.config.
jwt.cache.ttl.minutes property.

For information about the properties that control the JWT cache, see "Profile Properties".

Query Parameter Handling

By default, Java agents consider any query parameters to be part of the URL, and insert the entire
string into the policy decision cache. For example, the agent will insert each of the following URLs in
the cache, even though the root URL is the same:
http://agent.example.com:8080/protected/resource.jsp
http://agent.example.com:8080/protected/resource.jsp?a=value1
http://agent.example.com:8080/protected/resource.jsp?b=value2

Applications adding new parameters to the URL on every request would fill the Java agent's policy
cache without actually using it, which in turn causes the agent to request policy decision to AM each
time.

To prevent this behavior, Java agents can be configured to either retain nominated URL parameters
(for example, to remove all but those that are added as part of the policy evaluation) or to discard
them (for example, to remove all parameters added by the angular.js framework).

To retain nominated query parameters, configure one of the following properties:

• Retain Query Parameters

• Regular Expression Retain Query Parameters

To remove nominated query parameters, configure one of the following properties:

• Remove Query Parameters

Introducing Java Agents
Authentication Failure Notification

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

• Regular Expression Remove Query Parameters

The properties are mutually exclusive, and Java agents check them in the following order of
precedence:

1. Remove Query Parameters

2. Regular Expression Remove Query Parameters

3. Retain Query Parameters

4. Regular Expression Retain Query Parameters

Warning

Java agents strip the nominated query parameters from the URL before taking the following actions:

• Asking AM for policy evaluation

• Checking the not-enforced lists

Ensure the policies defined in AM and the not-enforced rules configured for the agent do not expect a
parameter that has been removed.

For more information about these properties, see Query Parameter Handling Properties.

Authentication Failure Notification

By default, Java agents return an HTTP 400 message when they or AM are unable to authenticate the
end user, regardless of the reason. This is to prevent malicious users from gaining information that
could help them gain access to the system.

Consider an example where the agent returns an "unknown user" message. This would give malicious
users a clue to keep on trying different user names until the error message changed to, for example,
"wrong password".

The following is a table showing possible reasons for an agent to return an HTTP 400 message. Even
if indirectly, they all mean that the agent cannot authenticate the end user:

Authentication Failure Reasons

Reason Code Meaning
AUTHN_BOOKKEEPING_COOKIE_MISSING The agent cannot find the authentication tracking cookie (defined in the

org.forgerock.agents.authn.cookie.name property).

This error can happen if the user successfully authenticates, but clicks
the back button of the browser to return to the previous page.

NONCE_MISSING The agent found the authentication tracking cookie, but it cannot find the
unique identifier of the authentication request inside the cookie.

Introducing Java Agents
Authentication Failure Notification

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

Reason Code Meaning
This error can happen if the user successfully authenticates, but clicks
the back button of the browser to return to the previous page.

BAD_AUDIENCE The audience in the JWT did not correspond to the audience in the cookie
entry.

This error can happen if all agents working in a cluster do not have the
same Agent Profile Name.

NO_TOKEN The agent cannot find the session ID token.
TOKEN_EXPIRED The agent found the session ID token, but it is past its expiry date.
AM_SAYS_INVALID The agent found the session ID token, the expiry time is correct, but AM

returns that the ID token is invalid.
JWT_INVALID The agent found the session ID token, but cannot parse it.
EXCEPTION This reason can have the following meanings:

• The agent found the session ID token, but threw an exception while
parsing it.

• The agent cannot connect to AM to validate the ID token, maybe due to
a network outage.

The behavior of returning an HTTP 400 message is not always desirable; for example, when
debugging the agent flow or when another application depends on the error message. To customize
how the agent behaves in these cases, you can configure the following:

• A URL or URI where the agent redirects the end user after the authentication failure.

This way, you can control the message that the agent displays to the end user.

• User-friendly messages that are mapped to the different conditions that may cause the Java agent
to return an HTTP 400 message.

For more information about the related properties, see Authentication Failure Properties.

Preparing for Installation
Downloading and Unzipping Java Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

Chapter 2

Preparing for Installation
This chapter covers tasks to perform before installing Java agents in your environment. The following
table contains a list of the tasks:

Task Section
Download Java agent binaries Section
Secure communications between AM and the Java
agents

Section

Create agent profiles Section
Configure your environment when communication
between AM and agents happens behind load
balancers or reverse proxies

Section

Downloading and Unzipping Java Agents
Navigate to the ForgeRock BackStage website and choose the agent to download based on your
version, architecture, and operating system requirements. Remember to verify the checksum of the
downloaded file against the checksum posted on the download page.

Unzip the file in the directory where you plan to store the Java agent's configuration and log files. The
following directories are extracted:

bin

The agentadmin installation and configuration program. For more information about the tool, see
"Command-Line Tool Reference"

config

Configuration templates used by the agentadmin command during installation

data

Not used

etc

Configuration templates used during installation

/downloads/am/latest/java_agents/

Preparing for Installation
Configuring AM Servers to Communicate With Java Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

installer-logs

Location of log files written during installation

legal-notices

Licensing information including third-party licenses

lib

Shared libraries used by the Java agent

locale

Property files used by the installation program

README

README file containing platform and install information for the agent

Configuring AM Servers to Communicate With Java Agents
AM communicates all authentication and authorization information to Java agents using OpenID
Connect (OIDC) JSON web tokens (JWT). To secure the integrity of the JSON payload (outlined in the
JSON Web Algorithm specification RFC 7518), AM and the Java agent support signing the tokens for
communication with the RS256 algorithm.

AM also uses an HMAC signing key to protect requested ACR claims values between sending the user
to the authentication endpoint, and returning from successful authentication.

By default, AM uses a demo key and an autogenerated secret for these purposes. For production
environments, perform the steps in one of the following procedures to create new key aliases and
configure them in AM:

• "To Configure AM Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.0 or earlier"

• "To Configure AM Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.5 or later"

To Configure AM Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.0 or earlier

By default, AM 6.0 or earlier signs the JWTs with the test key alias provided in AM's JCEKS keystore
and sign the claims with a secret autogenerated at time.

Perform the following steps to create and set up a new key and a new secret in AM 6.0 or earlier:

1. Create the following aliases in one of the secret stores configured in AM, for example, the default
JCEKS keystore:

a. Create an RSA key pair.

https://tools.ietf.org/html/rfc7518

Preparing for Installation
Configuring AM Servers to Communicate With Java Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

For more information about creating a key alias in the AM keystore, see the section Creating
Key Aliases of the ForgeRock Access Management Security Guide.

b. Create an HMAC secret.

2. In the AM console, navigate to Configure > Global Services > OAuth2 Provider.

3. Perform the following actions:

a. Replace the test key alias in the ID Token Signing Key Alias for Agent Clients field with the
new RSA key alias.

b. Replace the value in the Authenticity Secret field with the new HMAC secret.

Note that you may already have a secret configured for this secret ID, since it is also used for
signing certain OpenID Connect ID tokens and remote consent requests.

c. Save your changes.

No further configuration is required in the agents.

To Configure AM Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.5 or later

By default, AM 6.5 or later is configured to:

• Sign the JWTs with the secret mapped to the am.global.services.oauth2.oidc.agent.idtoken.signing
secret ID. This secret ID defaults to the rsajwtsigningkey key alias provided in AM's JCEKS keystore.

• Sign the claims with the secret mapped to the am.services.oauth2.jwt.authenticity.signing secret ID.
This secret ID defaults to the hmacsigningtest key alias available in AM's JCEKS keystore.

Perform the following steps to create and set up new keys on a keystore secret store:

1. Create the following aliases in one of the secret stores configured in AM, for example, the default
JCEKS keystore:

a. Create an RSA key pair.

b. Create an HMAC secret.

2. In the AM console, navigate to Configure > Secret Stores > Keystore Secret Store Name >
Mappings.

3. Configure the following secret IDs:

a. Configure the new RSA key alias in the am.global.services.oauth2.oidc.agent.idtoken.signing
secret ID.

b. Configure the new HMAC secret in the am.services.oauth2.jwt.authenticity.signing secret ID.

../../../am/7/security-guide/configuring-keys.html#creating-new-keys
../../../am/7/security-guide/configuring-keys.html#creating-new-keys

Preparing for Installation
Creating Agent Profiles

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

Note that you may already have a secret configured for this secret ID, since it is also used
for signing certain OpenID Connect ID tokens and remote consent requests. For more
information, see Secret ID Default Mappings in the ForgeRock Access Management Security
Guide.

c. Save your changes.

For more information about secret stores, see the chapter Configuring Secret Stores of the
ForgeRock Access Management Security Guide.

No further configuration is required in the agents.

Creating Agent Profiles
A Java agent requires a profile to connect to and communicate with AM, regardless of whether it is
stored centrally in AM or on the agent installation.

To Create an Agent Profile in AM Using the Console

Create an agent profile using the AM console by performing the following steps:

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java, and then
select the Add Java Agent button in the Agent tab.

2. Complete the web form using the following hints:

Agent ID

The ID of the agent profile. This ID is used during the agent installation. For example, MyAgent.

Agent URL

The URL where the Java agent resides, for example, http://www.example.com:8080/agentapp.

In centralized configuration mode, the Agent URL is used to populate the agent profile for
services, such as notifications.

Server URL

The full URL to an AM instance. If AM is deployed in a site configuration (behind a load
balancer), enter the site URL.

In centralized configuration mode, Server URL is used to populate the agent profile for use
with as login, logout, naming, and cross-domain SSO.

../../../am/7/security-guide/secret-mapping.html#secret-id-mappings
../../../am/7/security-guide/configure-secret-stores.html

Preparing for Installation
Creating Agent Profiles

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

Password

The password the agent uses to authenticate to AM. Use this password when installing an
agent.

To Create an Agent Profile Group and Inherit Settings

Agent profile groups let you set up multiple agents that inherit settings from the group. To create a
new agent profile group, perform the following steps:

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java.

2. Select New in the Group table, and provide a name for the group and the URL to the AM server in
which to store the profile.

After creating the group profile, you can select the link to the new group profile to fine-tune the
configuration.

3. Inherit group settings by selecting your agent profile, and then selecting the group name in the
Group drop-down list on the Global tab.

4. Adjust inheritance by toggling the Inherit value button next to properties that support
inheritance:

 = Do not inherit value from group.
 = Inherit value from group.

Tip

You can also create agent profiles by using the /realm-config/agents/WebAgent/{id} endpoint in the REST API.

Preparing for Installation
Delegating Agent Profile Creation

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

For more information, navigate to the API Explorer in your AM instance.

Delegating Agent Profile Creation

If you want to create agent profiles when installing Java agents, then you need the credentials of an
AM user who can read and write agent profiles.

You can use the AM administrator account when creating agent profiles. If you delegate agent
installation, then you might not want to share AM administrator credentials with everyone who
installs Java agents.

To Create Agent Administrators for a Realm

Follow these steps to create agent administrator users for a realm:

1. In the AM console, navigate to Realms > Realm Name > Subjects.

2. Under Group click New... and create a group for agent administrators.

3. Switch to the Privileges tab for the realm, and click the name of the group you created.

4. Select Read and write access to all configured agents, and then Save your work.

5. Return to the Subjects tab, and under User create as many agent administrator users as needed.

6. For each agent administrator user, edit the user profile.

Under the Group tab of the user profile, add the user to agent profile administrator group, and
then Save your work.

7. Provide each system administrator who installs Java agents with their agent administrator
credentials.

When installing the Java agent with the --custom-install option, the system administrator
can choose the option to create the profile during installation, and then provide the agent
administrator user name and the path to a read-only file containing the agent administrator
password. For silent installs, you can add the --acceptLicense option to auto-accept the software
license agreement.

Supporting Load Balancers and Reverse Proxies Between AM
and the Agents
When your environment has reverse proxies or load balancers configured between the agents and
AM, you must perform additional configuration in both AM and your environment before installing
the agents.

../../../am/7/REST-guide/sec-about-api-explorer.html

Preparing for Installation
Supporting Load Balancers and Reverse Proxies Between AM and the Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

Failure to do so may cause the agent installation to fail, or it may compromise the agent's
functionality.

For more information, see "Configuring Environments With Load Balancers and Reverse Proxies".

Configuring Environments With Load Balancers and Reverse Proxies

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

Chapter 3

Configuring Environments With Load
Balancers and Reverse Proxies
When working with AM and agents, the most common deployment scenario is to configure a load
balancer and a reverse proxy between the clients and the agents, and another load balancer and
reverse proxy between the agent and an AM site, as shown in the following diagram:

Configuring Environments With Load Balancers and Reverse Proxies

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

Java Agents in Environments with Load Balancers and Reverse Proxies

Access

Managem ent

Access

Managem ent

Access

Managem ent

HTTPS

HTTPS

ClientsClientsClients

HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Agent

Protected

Resource

Java Container
HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Usually, you want to anonymize client traffic as it gets into your network by using a reverse proxy,
then balance the load among different application servers and agents.

AM sites are usually deployed behind a load balancer so the load can be spread among different
instances. A reverse proxy may be deployed in front of the AM site to protect its APIs, too.

Note that the reverse proxy and the load balancer may be the same entity. In very complex
environments, there may be more than the depicted load balancers and reverse proxies deployed in
the network.

Configuring Environments With Load Balancers and Reverse Proxies
Regarding Communication Between AM and Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

In any case, when installing Java agents in an environment with load balancers or reverse proxies,
you must consider the communication between the clients and the Java agents, and between the
agents and the AM servers.

Refer to the following sections for more information:

• "Regarding Communication Between AM and Agents".

• "Regarding Communication Between Clients and Agents".

Regarding Communication Between AM and Agents
Before attempting to install Java agents in an environment where AM is behind a load balancer,
reverse proxy, or both, consider the following points:

Agent's IP Address and/or FQDN

When a load balancer or a reverse proxy is configured between AM and the Java agents, the
agents' IP addresses and FQDNs are concealed by the load balancer/reverse proxy's own IP or
FQDN. As a result, AM cannot determine the agents' base URL as expected.

This could cause trouble during the installation process and also hinder functionality such as
redirection using the goto parameter.

Therefore, you must configure the following:

• The load balancer or reverse proxy, to forward the agents' IP address and/or FQDN in a header.

• The AM site, to recover the forwarded headers. For more information, see "Configuring AM to
Use Forwarded Headers".

Note

A load balancer or reverse proxy conceals the AM instances' IP addresses and FQDNs. When installing Java
agents, use the load balancer or reverse proxy IP address or FQDN as the point of contact for the AM site.

AM Sessions and Session Stickiness

When Java agents communicate with an AM site that is behind a load balancer, you can improve
policy evaluation performance by setting up AM's sticky cookie (by default, amlbcookie) to the AM's
server ID. For more information, see Configuring Site Sticky Load Balancing in the ForgeRock
Access Management Setup Guide.

Important

When configuring multiple agents behind a load balancer or reverse proxy, you must take into
consideration whether you use one or multiple agent profiles, since it impacts sticky load balancer
requirements:

../../../am/7/setup-guide/configure-lb.html#configure-lb-stateful

Configuring Environments With Load Balancers and Reverse Proxies
Configuring AM to Use Forwarded Headers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

• If the agents are configured with multiple agent profiles you must configure sticky load balancing. This
is because the agent profile name is contained in the OpenID Connect JWT the agent and AM use to
communicate. Without session stickiness, there is no way to make sure that the appropriate JWT ends in
the appropriate Java agent instance.

• If multiple agents are configured with the same agent profile, you can decide whether to configure sticky
load balancing or not depending on other requirements of your environment.

WebSockets

Your load balancers and reverse proxies must support the WebSocket protocol for communication
between the Java agents and the AM servers.

For more information, refer to the load balancer or proxy documentation.

Tip

For an example of how to configure Apache HTTP as a reverse proxy, see "Configuring Apache HTTP Server as
a Reverse Proxy Example".

Configuring AM to Use Forwarded Headers

When Java agents are behind a load balancer or reverse proxy, you must configure AM to recover the
forwarded headers that expose the agents' real IP address or FQDN.

To Configure AM to Use Forwarded Headers

To configure how AM obtains the base URL of Java agents, use the Base URL Source service:

1. Log in to the AM console as an administrative user, such as amAdmin.

2. Navigate to Realms > Realm Name > Services.

3. Select Add a Service, select Base URL Source, and then select Create, leaving the fields empty.

4. Configure the service with the following properties:

• Base URL Source: X-Forwarded-* headers

This property allows AM to retrieve the base URL from the Forwarded header field in the HTTP
request. The Forwarded HTTP header field is standardized and specified in RFC 7239.

• Context path: AM's deployment uri. For example, /openam.

Leave the rest of the fields empty.

http://tools.ietf.org/html/rfc7239

Configuring Environments With Load Balancers and Reverse Proxies
Regarding Communication Between Clients and Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

Tip

For more information about the Base URL Source service, see Base URL Source in the ForgeRock Access
Management Reference.

5. Save your changes.

Regarding Communication Between Clients and Agents
When your environment has load balancers or reverse proxies between clients and agents, you must
consider the following points:

Client's IP Address and/or FQDNs

When configuring Java agents behind a load balancer or reverse proxy, the clients' IP addresses
and FQDNs are hidden by the load balancer's IP or FQDN, which results in agents not being able
to determine the clients' base URLs.

Therefore, you must configure the load balancer or reverse proxy to forward the client's IP
address and/or the client's FQDN in a header. Failure to do so will will prevent the agent from
performing policy evaluation, and applying not-enforced and conditional login/logout rules.

For more information, see "Configuring Client Identification Properties".

POST Data Preservation

When using POST data preservation, you must use sticky load balancing to ensure that the client
always hits the same agent and, therefore, their saved POST data.

Java agents provide properties to set either a sticky cookie or a URL query string for load
balancers and reverse proxies.

For more information, see "Configuring POST Data Preservation for Load Balancers or Reverse
Proxies".

Java Containers FQDNs, Ports, and Protocols

When the protected Java containers and their agents are behind a load balancer or reverse proxy,
it is imperative that the agent is configured to match the load balancer FQDN, port, and protocol.

Failure to do so would make the agent to return HTTP 403 errors when clients request access to
resources.

There are two use-cases:

../../../am/7/reference/global-services-configuration.html#global-baseurl

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

• The load balancer or reverse proxy forwards requests and responses between clients and
protected Java containers only. In this case, ports and protocols configured in the Java
container match those on the load balancer or reverse proxy, but FQDNs do not.

• The load balancer or reverse proxy also performs SSL offloading, terminating the SSL traffic
and converting the requests reaching the Java container to HTTP. This reduces the load on
the protected containers, since the processing of the public key is usually done by a hardware
accelerator.

In this case, neither ports, protocols, or FQDNs match.

For more information about matching FQDNs, ports and protocols, see "Matching Protected Java
Container Ports, Protocols, and FQDNs".

Matching Protected Java Container Ports, Protocols, and FQDNs

When the protocol and port configured on the load balancer or reverse proxy differ from those
configured on the protected Java container, you must override them in the Java agent configuration.
The following diagram illustrates this scenario:

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

Different Protocol, Port, and FQDN

ht tps://www.exam ple.com :443

ClientsClientsClients

ht tp://app1.internal.com :80 ht tp://app2.internal.com :80

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Reverse
Proxy

Load
Balancer

Java Container

In this case, configure the Java agents following the steps in "To Override Protocol, Host, and Port".

When the protocol and port configured on the load balancer or reverse proxy match those configured
on the protected Java container, you must map the agent host name to the load balancer or reverse
proxy host name. The following diagram illustrates this scenario:

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

Same Protocol and Port, Different FQDN

ht tps://www.exam ple.com :443

ClientsClientsClients

ht tps://app1.internal.com :443 ht tps://app2.internal.com :443

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Java Container

Reverse
Proxy

Load
Balancer

In this case, configure the Java agents following the steps in "To Map the Agent Host Name to the
Load Balancer or Reverse Proxy Host Name".

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

To Override Protocol, Host, and Port

Use the alternate Java agent URL properties to override the agent protocol, host, and port with that
of the load balancer or reverse proxy.

Important

The Java agent configuration for SSL offloading has the side effect of preventing FQDN checking and mapping.
As a result, URL rewriting and redirection does not work correctly when the Java agent is accessed directly and
not through the load balancer or proxy. This should not be a problem for client traffic, but potentially could be
an issue for applications accessing the protected container directly, from behind the load balancer.

This procedure explains how to do so for a centralized Java agent profile configured in the AM
console. The steps also mention the properties for Java agent profiles that rely on local, file-based
configurations:

1. Log in to the AM console as an administrative user with rights to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. Set the Alternative Agent Host Name to that of the load balancer or reverse proxy. For example,
lb.example.com.

The equivalent property setting is com.sun.identity.agents.config.agent.host=lb.example.com.

4. Set the Alternative Agent Port number to that of the load balancer or proxy. For example, 80.

The equivalent property setting is com.sun.identity.agents.config.agent.port=80.

5. Set the Alternative Agent Protocol to that of the load balancer or proxy. For example, http or
https.

The equivalent property setting is com.sun.identity.agents.config.agent.protocol=https.

6. Save your work.

7. Restart the Java container where the agent is installed.

To Map the Agent Host Name to the Load Balancer or Reverse Proxy Host Name

When protocols and port numbers match, configure fully qualified domain name (FQDN) mapping.

This procedure explains how to do so for a centralized Java agent profile configured in the AM
console. The steps also mention the properties for Java agent profiles that rely on local, file-based
configurations:

1. Log in to the AM console as an administrative user with rights to modify the Java agent profile.

Configuring Environments With Load Balancers and Reverse Proxies
Configuring Client Identification Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name.

3. In the Global tab, enable FQDN Check.

The equivalent property setting is com.sun.identity.agents.config.fqdn.check.enable=true.

4. Set the FQDN Default field to the fully qualified domain name of the load balancer or proxy, such
as lb.example.com, rather than the protected container FQDN where the Java agent is installed.

The equivalent property setting is com.sun.identity.agents.config.fqdn.default=lb.example.com.

5. Append the FQDN of the load balancer or proxy to the Agent Root URL for CDSSO field.

The equivalent property setting is sunIdentityServerDeviceKeyValue[n]=lb.example.com.

6. Map the load balancer or proxy FQDN to the FQDN where the Java agent is installed in the
FQDN Virtual Host Map key-pair map. For example, set the key agent.example.com (protected Java
container) and a value lb.example.com (load balancer or proxy).

The equivalent property setting is com.sun.identity.agents.config.fqdn.mapping[agent.example.com]=lb.
example.com.

7. Save your work.

8. Restart the Java container where the agent is installed.

Configuring Client Identification Properties

After configuring your proxies or load balancers to forward the client's FQDN and/or IP address,
configure the Java agents to check the appropriate headers.

To Configure the Java Agent Client Identification Properties

This procedure explains how to configure the client identification properties for a centralized Java
agent profile configured in the AM console. The steps also mention the properties for Java agent
profiles that rely on local, file-based configurations:

1. Log in to the AM console with a user that has permissions to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. (Optional) In the Client IP Address Header field, configure the name of the header containing the
IP address of the client. For example, X-Forwarded-For.

Configure this property if your AM policies are IP address-based, you configured the agent for
not-enforced IP rules, or if you configured the agent to take any decision based on the client's IP
address.

The equivalent property setting is com.sun.identity.agents.config.client.ip.header=X-Forwarded-For.

Configuring Environments With Load Balancers and Reverse Proxies
Configuring POST Data Preservation for Load Balancers or Reverse Proxies

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

4. (Optional) In the Client Hostname Header field, configure the name of the header containing the
FQDN of the client. For example, X-Forwarded-Host.

Configure this property if your AM policies are URL-based, you configured the agent for not-
enforced URL rules, or if you configured the agent to take any decision based on the client's URL.

The equivalent property setting is com.sun.identity.agents.config.client.hostname.header=X-Forwarded-
Host.

5. Save your changes.

Configuring POST Data Preservation for Load Balancers or Reverse Proxies

When configuring POST data preservation behind a load balancer or a reverse proxy, you must
configure both your load balancer/reverse proxy and the Java agents for session stickiness.

This procedure explains how to configure the client identification properties for a centralized Java
agent profile configured in the AM console. The steps also mention the properties for Java agent
profiles that rely on local, file-based configurations:

To Configure POST Data Preservation Stickiness Properties

1. Log in to the AM console with a user that has permissions to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. Decide whether the Java agent should create a cookie or append a string to the URL to assist with
sticky load balancing.

In the PDP Stickysession mode drop-down menu, configure one of the following options:

• Cookie. The Java agent will create a cookie for POST data preservation session stickiness. The
contents of the cookie is configured in the next step.

• URL. The Java agent will append to the URL a string specified in the next step.

The equivalent property setting is org.forgerock.agents.pdp.sticky.session.mode=[Cookie|URL].

4. In the PDP Stickysession key-value field, configure a key-pair value separated by the = character.

For example, specifying lb=myserver either sets a cookie called lb with myserver as a value, or
appends lb=myserver to the URL query string.

The equivalent property setting is org.forgerock.agents.pdp.sticky.session.value=lb=myserver.

5. Save your changes.

6. Configure your load balancer or reverse proxy to ensure session stickiness when the cookie or
URL query parameter are present.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

Chapter 4

Installing Java Agents
Install Java agents in web application containers to police access to your web sites, web applications,
and resources. Java agents depend on AM for all authentication and authorization decisions. The
primary responsibility of Java agents is to enforce what AM decides in a way that is unobtrusive to the
user.

When installing Java agents, consider the following points:

• Configurations where AM and the Java agent are installed in the same container are not supported.

• A single Java agent installation can hold multiple agent instances. Therefore, install only one Java
agent per application server and configure as many agent instances as you require. Installing more
than one Java agent in an application server is not supported.

The following table contains a list of sections containing information to install Java agents on
supported platforms:

Task Section
Install Java agents on Apache Tomcat Section
Install Java agents on Red Hat JBoss Section
Install Java agents on Eclipse Jetty Section
Install Java agents on Oracle WebLogic Section
Install Java agents on IBM WebSphere Section

Installing the Tomcat Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.7 on Tomcat.

Before You Install

1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java
Agents".

2. Consider the following points before installing the Tomcat Java agent:

• Install Tomcat before you install the agent.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

• All of the Tomcat scripts must be present in the $CATALINA_HOME/bin directory. The Tomcat
Windows executable installer does not include the scripts, for example. If the scripts are not
present in your installation, copy the contents of the bin directory from a .zip download of
Tomcat of the same version as the one you installed.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the Tomcat Java Agent

Complete the following procedures to install the Tomcat Java Agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Tomcat Java Agent

1. Shut down the Tomcat server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/tomcat_agent/bin/agentadmin --install --acceptLicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the Tomcat configuration folder. For example, /path/to/apache-tomcat/conf.
Enter the complete path to the directory which is used by Tomcat Server to
store its configuration Files. This directory uniquely identifies the
Tomcat Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Tomcat Server Config Directory Path
[/opt/apache-tomcat-6.0.14/conf]: /path/to/apache-tomcat/conf

c. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

d. Enter the $CATALINA_HOME environment variable specifying the path to the root of the Tomcat
server. For example, /path/to/apache-tomcat.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

$CATALINA_HOME environment variable is the root of the tomcat
installation.
[? : Help, < : Back, ! : Exit]
Enter the $CATALINA_HOME environment variable: /path/to/apache-tomcat

e. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

f. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, TomcatAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: TomcatAgent

g. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

h. Enter the path to the password file you created as part of the pre-installation procedure. For
example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory : /path/to/tomcat/conf

AM server URL : https://openam.example.com:8443/openam
$CATALINA_HOME environment variable : /path/to/tomcat

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : TomcatAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/tomcat_agent/Agent_001/config/
OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/tomcat_agent/Agent_001/config/
OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/tomcat_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/tomcat_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/tomcat_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer adds the agent configuration to the Tomcat
configuration, and also set up the configuration and log directories for the agent.

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/tomcat_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the agent, allowing it to connect to AM and download its configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Directory for the debugging file. Use for troubleshooting.

Installing Java Agents
Installing the Tomcat Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

6. Review Tomcat's global web.xml file and your application's web.xml files and configure the agent
filter.

7. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the Tomcat Java Agent Silently

To install the Tomcat Java agent silently you must create a response file containing the installation
parameters, and then provide it to the agentadmin command.

The following is an example of the response file:
Agent User Response File
CONFIG_DIR= /path/to/apache-tomcat/conf
AM_SERVER_URL= https://openam.example.com:8443/openam
CATALINA_HOME= /path/to/apache-tomcat
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= TomcatAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the Tomcat Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

../../../am/7/authorization-guide/configuring-policies.html

Installing Java Agents
Installing the Tomcat Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Tomcat Java Agent Silently

1. Review the information in "Before You Install".

2. Shut down the Tomcat server where you plan to install the agent.

3. Make sure that AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the Tomcat Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. Review Tomcat's global web.xml file and your application's web.xml files and configure the agent
filter.

../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

Installing the JBoss Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.7 on JBoss. All the
examples assume that you are using the agent on JBoss, but the procedures are the same for WildFly.

Before You Install

1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java
Agents".

Agent binaries for JBoss and WildFly are the same.

2. Consider the following points before installing JBoss Java agents:

• Install JBoss before installing the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the JBoss Java Agent

Complete the following procedures to install the JBoss Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the JBoss Java Agent

1. Shut down the JBoss server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the JBoss Java agent:
$ /path/to/java_agents/jboss_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the JBoss installation directory. For example, /path/to/jboss.
Enter the complete path to the home directory of the JBoss instance.
[? : Help, ! : Exit]
Enter the path to the JBoss installation: /path/to/jboss

c. Enter the JBoss deployment mode. Supported modes are domain, which allows you to manage
multiple server instances from a single control point, or standalone, which is a single JBoss
instance.
Enter the name of the deployment mode of the JBoss installation that you wish
to use with this agent. Supported values are: domain, standalone.
[? : Help, < : Back, ! : Exit]
Enter the deployment mode of JBoss [standalone]: standalone

If you chose domain, enter the name of the JBoss domain:

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

Enter the name of the profile to use in domain mode.
[? : Help, < : Back, ! : Exit]
Enter the profile name: mydomain

d. Decide if you want to deploy the Java agent as a global JBoss module. If you want to include
application-specific modules, enter false.
Enter true if you'd like to deploy the policy agent as a global JBoss module.
[? : Help, < : Back, ! : Exit]
Install agent as global module? [true]:true

e. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

f. Enter the Java agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

g. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, JBossAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: JBossAgent

h. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

i. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:

SUMMARY OF YOUR RESPONSES

JBoss home directory : /path/to/jboss/
JBoss deployment mode: standalone
Install agent as global module: true
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : JBossAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/jboss_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/jboss_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/jboss_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/jboss_agent/Agent_001/logs/debug

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

Install log file location:
/path/to/java_agents/jboss_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer updates the JBoss configuration, adds the Java agent
application under JBOSS_HOME/server/standalone/deployments, and also sets up configuration and log
directories for the Java agent.

5. Take note of the configuration files and log locations.

Each Java agent instance that you install on the system has its own numbered configuration and
logs directory. The first Java agent instance configuration files and logs are thus located under
the directory java_agents/jboss_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing it to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting Java agent issues.

6. To protect an application in the container, configure the agent filter.

7. (Optional) If you responded false to the Deploy the policy agent as a global JBoss module question
during the installation process, perform the following steps:

a. Add the following line to the /path/to/protected/app/META-INF/MANIFEST.MF file of the application:
Dependencies: org.forgerock.openam.agent

b. Create a /path/to/protected/app/WEB-INF/jboss-deployment-structure.xml file with the following
content:

Installing Java Agents
Installing the JBoss Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

<?xml version="1.0"?>
 <jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <deployment>
 <dependencies>
 <module name="org.forgerock.openam.agent" >
 <imports>
 <include path="META-INF**"/>
 <include path="org**"/>
 </imports>
 </module>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

8. (Optional) If you responded domain to the Enter the name of the deployment mode question during the
installation process, you must manually deploy the java_agents/jboss_agent/etc/agentapp.war file to
JBoss.

The reason manual deployment is required when running JBoss in domain mode is that the agent
installer uses auto-deployment capabilities provided by the JBoss deployment scanner. The
deployment scanner is used only in standalone mode. When running JBoss in standalone mode, it
is not necessary to manually deploy the agentapp.war file.

9. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the JBoss Java Agent Silently

To install the JBoss Java agent silently, you must create a response file containing the installation
parameters that you will then provide to the agentadmin command.

The following is an example of the response file to install the agent when JBoss is configured in
standalone mode:
Agent User Response File
HOME_DIR= /path/to/jboss
INSTANCE_NAME= standalone
GLOBAL_MODULE= true
INSTALL_PROFILE_NAME=
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= JBossAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

The INSTALL_PROFILE_NAME variable is only used when the INSTANCE_NAME is set to domain, and it specifies the
name of the JBoss domain profile.

Installing Java Agents
Installing the JBoss Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the JBoss Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the JBoss Java Agent Silently

1. Review the information in "Before You Install" before proceeding.

2. Shut down the JBoss server where you plan to install the agent.

3. Make sure AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the JBoss Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. To protect an application in the container, configure the agent filter.

7. If you configured the GLOBAL_MODULE variable as false in the response file, add the following line to
the META-INF/MANIFEST.MF file of the application:
Dependencies: org.forgerock.openam.agent

8. If you configured the INSTANCE_NAME variable as domain in the response file, you must manually
deploy the java_agents/jboss_agent/etc/agentapp.war file to JBoss.

The reason manual deployment is required when running JBoss in domain mode is that the agent
installer uses auto-deployment capabilities provided by the JBoss deployment scanner. The
deployment scanner is used only in standalone mode. When running JBoss in standalone mode, it
is not necessary to manually deploy the agentapp.war file.

Installing the Jetty Java Agent
f This section covers prerequisites and installation procedures for Java Agents 5.7 on Jetty.

Before You Install

1. Download the Java agent from BackStage. For more information, see "Downloading and Unzipping
Java Agents".

2. Consider the following points before installing the Jetty Java agent:

• Install Jetty before you install the agent.

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

• Command-line examples in this chapter show Jetty accessed remotely. If you are following the
examples and have issues accessing Jetty remotely, you might have to change filter settings in
the deployment descriptor file, such as /path/to/jetty/webapps/test/WEB-INF/web.xml, as shown in
the following example:
 <filter>
 <filter-name>TestFilter</filter-name>
 <filter-class>com.acme.TestFilter</filter-class>
 <init-param>
 <param-name>remote</param-name>
 <param-value>true</param-value> <!-- default: false -->
 </init-param>
</filter>

Installing the Jetty Java Agent
Complete the following procedures to install the Jetty Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Jetty Java Agent

1. Shut down the Jetty server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/jetty_agent/bin/agentadmin --install --acceptLicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the absolute path to the root of the Jetty installation. For example, /path/to/jetty/home.
This is the equivalent of the JETTY_HOME environment variable for Jetty.
This is the home of the Jetty installation (directory containing start.jar)
[? : Help, ! : Exit]
Enter the Jetty home directory [/opt/jetty]: /path/to/jetty/home

c. Enter the absolute path to the Jetty configuration directory. For example, /path/to/jetty/etc.
Enter the absolute path of the Jetty etc directory.
 [? : Help, < : Back, ! : Exit]
 Enter the absolute path of the Jetty etc directory: /path/to/jetty/etc

d. Enter the absolute path to the Jetty base directory. For example, /path/to/jetty/base. This is
the equivalent of the JETTY_BASE environment variable for Jetty.

This path may be the same as the one specified as the root of the Jetty installation.
This is the base of the Jetty installation (directory containing the webapps subdirectory)
 [? : Help, < : Back, ! : Exit]
 Enter the Jetty base directory [/usr/local/jetty]: /path/to/jetty/base

e. Enter the AM URL. For example, https://openam.example.com:8443/openam.

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

f. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentadmin

g. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, JettyAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: JettyAgent

h. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

i. Enter the path to the password file you created as part of the pre-installation procedure. For
example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the installer:

SUMMARY OF YOUR RESPONSES

Jetty home directory (containing start.jar) : /path/to/jetty/home
Jetty Server etc directory : /path/to/jetty/etc
Jetty base directory (containing webapps subdirectory) which may be the same as your Jetty
home directory : /path/to/jetty/base
AM server URL : https://openam.example.com:8443/openam
Agent URL : https://www.example.com:8443/agentapp
Agent Profile name : JettyAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/jetty_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/jetty_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/jetty_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/jetty_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/jetty_agent/installer-logs/audit/install.log

 Thank you for using AM Policy Agent

Upon successful completion, the installer updates Jetty's start.jar to reference the agent, sets up
the agent web application, and also sets up configuration and log directories for the agent.

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/jetty_agent/Agent_001/:

Installing Java Agents
Installing the Jetty Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Directory for the debugging file. Use for troubleshooting.

6. To protect an application in the container, configure the agent filter.

7. (Optional) If you have a policy configured, you can test the agent installation. For example, try to
browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the Jetty Java Agent Silently

To install the Jetty Java agent silently, you must create a response file contanining the installation
parameters and then provide it to the agentadmin command.

The following is an example of the response file:
Agent User Response File
CONFIG_DIR= /path/to/jetty/etc
JETTY_HOME= /path/to/jetty/home
JETTY_BASE= /path/to/jetty/base
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= JettyAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Installing Java Agents
Installing the Jetty Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the Jetty Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

To install the Jetty Java Agent Silently

1. Check the information in "Before You Install".

2. Shut down the Jetty server where you plan to install the agent.

3. Make sure that AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the Jetty Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. To protect an application in the container, configure the agent filter.

Installing the WebLogic Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.7 on WebLogic.

Before You Install
1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java

Agents".

2. Consider the following points before installing the WebLogic Java agent:

• Install WebLogic before you install the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the WebLogic Java Agent
Complete the following procedures to install the WebLogic Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

../../../am/7/authorization-guide/configuring-policies.html

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebLogic Java Agent

1. Shut down the WebLogic server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/weblogic_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the startWebLogic.sh file of the WebLogic domain where you want to install
the agent. For example, /Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh.

../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 63

Enter the path to the location of the script used to start the WebLogic domain.
Please ensure that the agent is first installed on the admin server instance
before installing on any managed server instance.
[? : Help, ! : Exit]
Enter the Startup script location
[/usr/local/bea/user_projects/domains/base_domain/startWebLogic.sh]: /path/to/Oracle_Home/
user_projects/domains/base_domain/startWebLogic.sh

c. Enter the path to the WebLogic installation directory. For example, /path/to/weblogic.

Enter the WebLogic home directory
[? : Help, < : Back, ! : Exit]
Enter the WebLogic home directory [/usr/local/bea/wlserver_10.0]: /path/to/weblogic

d. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

e. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

f. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, WebLogicAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: WebLogicAgent

g. Enter the realm in which the specified agent profile exists.

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 64

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

h. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:
$ /path/to/java_agents/weblogic_agent/bin/agentadmin --install --acceptLicense

SUMMARY OF YOUR RESPONSES

Startup script location :
/Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh
WebLogic Server instance name : AdminServer
WebLogic home directory : /path/to/weblogic
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : WebLogicAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/weblogic_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/weblogic_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 65

/path/to/java_agents/weblogic_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/weblogic_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/weblogic_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/weblogic_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting agent issues.

6. The agent requires sourcing before it will work properly. There are two ways to source:

• Manually source the file containing the agent environment settings for WebLogic before
starting the application server.
$. /path/to/setAgentEnv_AdminServer.sh

• Or edit the startWebLogic.sh script to set the sourcing needed for the agent, by adding these
lines after the code block shown. Add the setAgentEnv_AdminServer.sh line to the following
location in the file. The drawback to this approach is that it could be overwritten, as noted in
the file:
$ cat /path/to/startWebLogic.sh
...
Any changes to this script may be lost when adding extensions to this
configuration.
DOMAIN_HOME="/opt/Oracle/Middleware/user_projects/domains/base_domain"
 . /path/to/setAgentEnv_AdminServer.sh
${DOMAIN_HOME}/bin/startWebLogic.sh $*

Installing Java Agents
Installing the WebLogic Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 66

Note

If the sourcing is not set properly, the following message appears:

<Error> <HTTP> <cent.example.com>
<AdminServer> <[STANDBY] ExecuteThread: '5' for queue: 'weblogic.kernel.
Default (self-tuning)'> <<WLS Kernel>> <><> <> <1360800613441>
<BEA-101165> <Could not load user defined filter in web.xml:
ServletContext@1761850405[app:agentapp module:agentapp.war path:null
spec-version:null] com.sun.identity.agents.filter.AmAgentFilter.
java.lang.ClassNotFoundException:
com.sun.identity.agents.filter.AmAgentFilter

7. Start the WebLogic server.

8. Deploy the /path/to/java_agents/weblogic_agent/etc/agentapp.war agent application in WebLogic.

9. To protect an application in the container, configure the agent filter.

10. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the WebLogic Java Agent Silently

To install the WebLogic Java agent silently, you must create a response file containing the installation
parameters that you will then provide to the agentadmin command.

The following is an example of the response file:
Agent User Response File
STARTUP_SCRIPT= /path/to/Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh
SERVER_NAME= AdminServer
WEBLOGIC_HOME_DIR= /path/to/weblogic
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= WebLogicAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Installing Java Agents
Installing the WebLogic Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 67

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the WebLogic Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the WebLogic Java Agent in Multi-Server Domains

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 68

To Install the WebLogic Java Agent Silently

1. Review the information in "Before You Install".

2. Shut down the WebLogic server where you plan to install the agent.

3. Make sure AM is running.

4. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

5. The agent requires sourcing before it will work properly. There are two ways to source:

• Manually source the file containing the agent environment settings for WebLogic before
starting the application server.
$. /path/to/setAgentEnv_AdminServer.sh

• Or edit the startWebLogic.sh script to set the sourcing needed for the agent, by adding these
lines after the code block shown. Add the setAgentEnv_AdminServer.sh line to the following
location in the file. The drawback to this approach is that it could be overwritten, as noted in
the file:
$ cat /path/to/startWebLogic.sh
 ...
 # Any changes to this script may be lost when adding extensions to this
 # configuration.
 DOMAIN_HOME="/opt/Oracle/Middleware/user_projects/domains/base_domain"
 . /path/to/setAgentEnv_AdminServer.sh
 ${DOMAIN_HOME}/bin/startWebLogic.sh $*

6. Start the WebLogic Server.

7. Deploy the /path/to/java_agents/weblogic_agent/etc/agentapp.war agent application in WebLogic.

8. To protect an application in the container, configure the agent filter.

Installing the WebLogic Java Agent in Multi-Server Domains
In many WebLogic domains, the administration server provides a central point for controlling and
managing the configuration of the managed servers that host protected applications.

If WebLogic-managed servers run on different hosts, you must create separate agent profiles
and perform separate installations for each so that AM can send notifications to the appropriate
addresses.

To Install the WebLogic Java Agent on Administration and Managed Servers

For multi-server WebLogic domains, install the Java agent as follows:

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 69

1. If servers are on different hosts, create agent profiles for each server where you plan to install
the agent.

The steps are described under "Installing the WebLogic Java Agent".

2. Prepare your protected web applications by adding the agent filter configuration as described in
"Configuring the Agent Filter for an Application".

3. Use the agentadmin command to install the agent either interactively, or silently on each server
in the domain:

• For interactive installation, follow the instructions in "To Install the WebLogic Java Agent".

• For silent installation, follow the instructions in "Installing the WebLogic Java Agent Silently".

4. On each managed server in the domain, update the classpath to include agent .jar files.

In WebLogic Node Manager console, navigate to Environment > Servers > server > Server Start
> Class Path, and then edit the classpath as in the following example, but all on a single line:
/path/to/java_agents/weblogic_agent/lib/agent.jar:
/path/to/java_agents/weblogic_agent/lib/openssoclientsdk.jar:
 ...
/path/to/java_agents/weblogic_agent/locale:
/path/to/java_agents/weblogic_agent/Agent_001/config:
$CLASSPATH

Replace the paths in the example with the actual paths for your domain.

5. Restart the managed servers.

Installing the WebSphere Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.7 on WebSphere.

Before You Install
1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java

Agents".

2. Consider the following points before installing the WebSphere Java agent:

• Install WebSphere before you install the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 70

• If you are using IBM Java, perform the following procedure:

To Install With IBM Java

The WebSphere Java agent runs with IBM Java. To install the agent using IBM Java on platforms
other than AIX, you must change the agentadmin script to use the IBM Java Cryptography
Extensions (JCE).

Note that line breaks and continuation marker (\) characters have been manually added to the
following examples to aid display in the documentation. These are not required when editing the
script.

1. Open the file bin/agentadmin for editing.

2. Edit the line that calls the AdminToolLauncher jar file to move the $AGENT_OPTS environment
variable before the classpath is set:

Before:
$JAVA_VM -classpath "$AGENT_CLASSPATH" $AGENT_OPTS \
 com.sun.identity.install.tools.launch.AdminToolLauncher $*

After:
$JAVA_VM $AGENT_OPTS -classpath "$AGENT_CLASSPATH" \
 com.sun.identity.install.tools.launch.AdminToolLauncher $*

3. Save your work.

You can now install the WebSphere Java agent with IBM Java as described in "Installing the
WebSphere Java Agent".

Installing the WebSphere Java Agent

Complete the following procedures to install the WebSphere Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

../../../am/7/authorization-guide/configuring-policies.html

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 71

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebSphere Java Agent

1. Shut down the WebSphere server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/websphere_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the configuration directory of the server instance for the WebSphere node.
For example, /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1.

../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 72

Enter the fully qualified path to the configuration directory of the Server
Instance for the WebSphere node.
[? : Help, ! : Exit]
Enter the Instance Config Directory
[/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/<hostname>Node01Cell/nodes/
<hostname>Node01/servers/server1]: /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/
DefaultCell01/nodes/DefaultNode01/servers/server1

c. Enter the name of the server instance where the agent will be installed. For example, server1.
Enter the Server Instance name.
[? : Help, < : Back, ! : Exit]
Enter the Server Instance name [server1]: server1

d. Enter the path to the WebSphere install directory. For example, /path/to/WebSphere/AppServer.
Enter the WebSphere Install Root directory.
[? : Help, < : Back, ! : Exit]
Enter the WebSphere Install Root directory
[/opt/IBM/WebSphere/AppServer]: /path/to/WebSphere/AppServer

e. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

f. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

g. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, WebSphereAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: WebSphereAgent

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 73

h. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

i. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit:

SUMMARY OF YOUR RESPONSES

Instance Config Directory :
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Instance Server name : server1
WebSphere Install Root Directory : /path/to/WebSphere/AppServer
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : WebSphereAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/websphere_agent/Agent_001/config/

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 74

 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/websphere_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/websphere_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/websphere_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/websphere_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer updates the WebSphere configuration, copies the
agent libraries to WebSphere's external library directory, and also sets up configuration and log
directories for the agent.

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/websphere_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting agent issues.

6. Restart the WebSphere server.

7. Deploy the /path/to/java_agents/websphere_agent/etc/agentapp.war agent application in WebSphere.

8. To protect an application in the container, configure the agent filter.

9. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing Java Agents
Installing the WebSphere Java Agent Silently

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 75

Installing the WebSphere Java Agent Silently

To install the WebSphere Java agent silently, you must create a response file containing the
installation parameters that you will then provide to the agentadmin command.

The following is an example of the response file:
Agent User Response File
SERVER_INSTANCE_DIR= /path/to/WebSphere/AppServer/profiles/AppSrv01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1
SERVER_INSTANCE_NAME= server1
HOME_DIRECTORY= /path/to/WebSphere/AppServer
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= WebSphereAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedure to install the WebSphere Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Configuring Policies.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
AM Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Enabling Restricted Tokens for CDSSO Session Cookies in the
ForgeRock Access Management Security Guide.

../../../am/7/authorization-guide/configuring-policies.html
../../../am/7/security-guide/enable-cdsso-cookie-hijacking-protection.html

Installing Java Agents
Notes About WebSphere Network Deployment

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 76

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebSphere Java Agent Silently

1. Check the information in "Before You Install".

2. Shut down the WebSphere server where you plan to install the agent.

3. Make sure AM is running.

4. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

5. Start the WebSphere server.

6. Deploy the /path/to/java_agents/websphere_agent/etc/agentapp.war agent application in WebSphere.

7. To protect an application in the container, configure the agent filter.

8. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Notes About WebSphere Network Deployment

When using WebSphere Application Server Network Deployment, you must install WebSphere
Java agents on the Deployment Manager, on each Node Agent, and on each Application Server.
Installation requires that you stop and then restart the Deployment Manager, each Node Agent, and
each Application Server in the Network Deployment.

Installing Java Agents
Notes About WebSphere Network Deployment

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 77

Before installation, synchronize each server configuration with the profile saved by the Deployment
Manager using the syncNode command. After agent installation, copy the server configuration
for each node stored in server.xml to the corresponding Deployment Manager profile. After you
have synchronized the configurations, you must restart the Deployment Manager for the Network
Deployment.

Post-Installation Tasks
Configuring the Agent Filter

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 78

Chapter 5

Post-Installation Tasks
This chapter covers tasks to perform after installing Java agents in your environment. The following
table contains a list of the tasks:

Task Section
Configure the agent filter and mode of operation.
You must configure the agent filter to protect your
applications

Section

Configure Java agents to log audit messages Section
Configure Java agents to provide performance
monitoring metrics.

Section

Configure Java agents to communicate with AM using
HTTPS

Section

Configure your environment when communication
between clients and agents happens behind load
balancers or reverse proxies

Section

Configuring the Agent Filter
The agent filter is a servlet that intercepts inbound client requests to a resource and processes them
based on the filter mode of operation.

Configuring the agent filter is a two-step process:

• Configuring the Agent Filter for an Application

• Configuring the Agent Filter's Mode of Operation

Configuring the Agent Filter for an Application

The agent filter is configured in the application's web.xml file. Therefore, to protect several
applications in the same container, you must configure the agent filter in each application.

Consider the following example configuration:

Post-Installation Tasks
Configuring the Agent Filter's Modes of Operation

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 79

<filter>
 <filter-name>Agent</filter-name>
 <display-name>AM Agent</display-name>
 <description>AM Agent Filter</description>
 <filter-class>com.sun.identity.agents.filter.AmAgentFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>Agent</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>ERROR</dispatcher>
</filter-mapping>

The agent filter's configuration requires two elements:

• filter. Defines the unique identifier of the filter and the filter class. It contains the following
elements:

• filter-name. The value is a string, for example, Agent.

• display-name. The value is a string, for example, AM Agent. The container's management console may
use this string as an identifier for the filter.

• description. The value is a string, for example, AM Agent Filter. The container's management
console may use this string as description for the filter.

• filter-class. The value is the agent filter class, com.sun.identity.agents.filter.AmAgentFilter.

• filter-mapping. Defines the resources protected by the filter. It contains the following elements:

• filter-name. The value must match the value of the filter-name element defined in the filter
element.

• url-pattern. The value defines the resources that the agent protects. For example, set the value to
/* to protect every resource in the application.

• dispatcher. Optional. Set one or more dispatcher elements to protect the Java container dispatchers
as well as the application.

Refer to the container vendor's documentation for more information about the container's
dispatchers.

If you configure additional filters in the web.xml file, ensure the agent filter is defined first.

Configuring the Agent Filter's Modes of Operation

The agent filter's behavior when processing requests is based on the filter mode of operation.

Post-Installation Tasks
Configuring the Agent Filter's Modes of Operation

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 80

The agent filter mode can be set either globally, which applies to all context paths protected by the
agent, or on a per-context path level, overriding the global setting.

The filter mode can be set to one of the following values:

Agent Filter Modes

Filter Mode Requires
Authentication?

Requires
Authorization?

Comments

URL_POLICY Yes Yes AM performs the following tasks:

• Issues an OIDC JWT to the client after successful
authentication a

• Checks resource-based policies to evaluate whether the
client can access the resource b

SSO_ONLY Yes No AM issues an OIDC JWT to the client after successful
authentication.

NONE No No This mode disables the agent filter from taking any action on
incoming requests. If logging is enabled, the agent filter logs
all incoming requests for auditing purposes.

ALL Yes Yes This mode behaves in the same way as the URL_POLICY mode
and is kept for backward-compatibility purposes.

J2EE_POLICY - - This mode does not apply to Java Agents 5.7, but it shows
in the AM agent profile page for backward-compatibility
purposes.

a For more information about AM authentication mechanisms, see the ForgeRock Access Management Authentication and
Single Sign-On Guide.
b For more information about AM policies, see the ForgeRock Access Management Authorization Guide.

If neither the global or per-context paths filter mode are specified, the agent uses the default value,
URL_POLICY.

To Configure the Agent Filter Mode

1. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name.

2. On the Global tab, change the mode in the Agent Filter Mode (com.sun.identity.agents.config.
filter.mode) property:

• To set the global filter mode, enter the mode name in the Value field, for example SSO_ONLY,
and then click Add.

• To override the filter mode for a particular context path, enter the name of the context path
in the Key field, for example BankApp, enter the mode name in the Value field, for example URL_
POLICY, and then click Add.

../../../am/7/authentication-guide
../../../am/7/authentication-guide
../../../am/7/authorization-guide/configuring-policies.html

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 81

Setting the Agent Filter Mode

3. Save your changes.

Configuring Audit Logging
Java agents support logging audit events for security, troubleshooting, and regulatory compliance.
You can store agent audit event logs in the following ways:

• Remotely. Log audit events to the audit event handler configured in the AM realm. In a site
comprised of several AM servers, Java agents write audit logs to the AM server that satisfies the
agent's request for client authentication or resource authorization.

Java agents cannot log audit events remotely if:

• AM's Audit Logging Service is disabled.

• No audit event handler is configured in the realm where the agent is configured.

• All audit event handlers configured in the realm where the agent is configured are disabled.

For more information about audit logging in AM, see the chapter Setting Up Audit Logging in the
ForgeRock Access Management Security Guide.

• Locally. Log audit events in JSON format to a file in the Java agent installation directory, /
java_agents/agent_type/logs/audit/.

• Locally and remotely. Log audit events:

• To a file in the agent installation directory.

• To the audit event handler configured in the AM realm in which the agent profile is configured.

The following is an example of an agent log record:
{
 "timestamp":"2017-10-30T11:56:57Z",
 "eventName":"AM-ACCESS-OUTCOME",

../../../am/7/security-guide/audit-logging.html

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 82

 "transactionId":"608831c4-7351-4277-8a5f-b1a83fe2277e",
 "userId":"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "trackingIds":[
 "fd5c8ccf-7d97-49ba-a775-76c3c06eb933-82095",
 "fd5c8ccf-7d97-49ba-a775-76c3c06eb933-82177"
],
 "component":"Java Policy Agent",
 "realm":"/",
 "server":{
 "ip":"127.0.0.1",
 "port":8020
 },
 "client":{
 "ip":"127.0.0.1",
 "port":55180
 },
 "request":{
 "protocol":"HTTP/1.1",
 "operation":"GET"
 },
 "http":{
 "request":{
 "secure":false,
 "method":"GET",
 "path":"http://my.example.com:8020/examples/",
 "headers":{
 "referer":[
 "https://openam.example.com:8443/openam/oauth2/authorize?scope[...]"
],
 "accept-language":[
 "en,en-US;q=0.8,da;q=0.6,fr;q=0.4"
],
 "host":[
 "my.example.com:8020"
],
 "upgrade-insecure-requests":[
 "1"
],
 "connection":[
 "keep-alive"
],
 "cache-control":[
 "max-age=0"
],
 "accept-encoding":[
 "gzip, deflate"
],
 "user-agent":[
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko)
[...]"
],
 "accept":[
 "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8"
]
 },
 "cookies":{
 "am-auth-jwt":"eyJ0eXAiOiJKV1QiLCJhbGciOi[...]"
 "i18next":"en",
 "amlbcookie":"01",

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 83

 "iPlanetDirectoryPro":"Ts2zDkGUqgtkoxR[...]"
 }
 }
 },
 "response":{
 "status":"DENIED"
 },
 "_id":"fd5c8ccf-7d97-49ba-a775-76c3c06eb933-81703"
}

Note

Local audit logs do not have an _id attribute, which is an internal AM id.

The audit log format adheres to the log structure shared across the ForgeRock Identity Platform.
For more information about the audit log format, see the section Audit Log Format in the ForgeRock
Access Management Security Guide.

Java agents support propagation of the transaction ID across the ForgeRock platform using the HTTP
header X-ForgeRock-TransactionId. For more information about configuring the header, see Configuring
the Trust Transaction Header System Property in the ForgeRock Access Management Security Guide.

By default, Java agents do not write audit log records. To configure audit logging, perform the
following procedure:

To Configure Audit Logging

The procedure assumes the agent uses centralized configuration. Property names are also provided
for local configuration agents.

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java > Agent
Name > Global > Audit.

2. In the property Audit Types, select the type of messages to log. For example, select LOG_ALL to log
access allowed and access denied events.

3. In the property Audit Log File Location, select whether to write the audit logs locally to the agent
installation (LOCAL), remotely to AM (REMOTE), or to both places (ALL). For example, keep REMOTE to log
audit events to the AM instances.

4. (Optional) If you chose to log audit messages locally, enable the Rotate Local Audit Log property
(com.sun.identity.agents.config.local.log.rotate) to rotate the audit log files upon reaching a
maximum size.

5. (Optional) If you enabled the Rotate Local Audit Log property (com.sun.identity.agents.config.
local.log.size), specify the maximum size of the audit log files in the Local Audit Log Rotation Size
property.

../../../am/7/security-guide/sec-maint-audit-ref.html#audit-log-format
../../../am/7/security-guide/implementing-audit.html#configuring-trusttransactionheader-system-property
../../../am/7/security-guide/implementing-audit.html#configuring-trusttransactionheader-system-property

Post-Installation Tasks
Configuring Performance Monitoring

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 84

Configuring Performance Monitoring
This section covers how to monitor the performance of Java agents.

You can monitor the performance of agents through the following interfaces:

Prometheus Monitoring

Prometheus is third-party software used for gathering and processing monitoring data.

For information about installing and running Prometheus, see the Prometheus documentation.

You can configure Java agents to expose an endpoint which Prometheus scrapes to obtain
performance metrics from your protected applications.

Configure Prometheus to monitor the metrics endpoint exposed by the agent by using the
prometheus.yml configuration file. For more information on configuring Prometheus, see the
Prometheus configuration documentation.

Tip

Prometheus provides monitoring and processing for the information provided by Java agents, but further
analysis and visualization may be desired. In this case, you can use tools such as Grafana to create
customized charts and graphs based on the information collected by Prometheus.

Example Grafana dashboards can be downloaded from the ForgeRock BackStage website.

For more information on installing and running Grafana, see the Grafana website.

For more information, see "To Expose an Endpoint for Common REST and Prometheus Metrics".

ForgeRock® Common REST Monitoring

You can configure Java agents to expose an endpoint that allows REST clients to gather metrics
about your protected applications, in JSON format.

For more information, see "To Expose an Endpoint for Common REST and Prometheus Metrics".

CSV File-based Monitoring

You can write the metrics to comma-separated value (CSV) files, without having to expose an
endpoint.

When enabled, the monitoring .csv files are written the same directory as the agent instance
debug files, for example in /path/to/java_agents/tomcat_agent/Agent_001/logs/debug/.

For more information, see "To Enable Saving Metrics to CSV Files".

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
/downloads/am/latest/java_agents/
https://grafana.com

Post-Installation Tasks
Configuring Performance Monitoring

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 85

To Expose an Endpoint for Common REST and Prometheus Metrics

Common REST and Prometheus performance metrics are provided by an endpoint configured in the
protected application's web.xml file. The endpoint must be accessible to the REST client or Prometheus
server that will be making use of the performance data.

To configure an agent instance to expose the endpoint for metrics, perform the following steps:

1. For each protected application that will expose metrics, edit the application's web.xml file.

The following Tomcat example exposes a base endpoint named /metrics:
<servlet>
 <servlet-name>AgentMonitoring</servlet-name>
 <servlet-class>org.forgerock.http.servlet.HttpFrameworkServlet</servlet-class>
 <init-param>
 <param-name>application-loader</param-name>
 <param-value>guice</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>AgentMonitoring</servlet-name>
 <url-pattern>/metrics/*</url-pattern>
</servlet-mapping>

You can choose any name for the exposed base endpoint, but you must ensure it does not conflict
with any of the builtin agent endpoints, for example /sunwCDSSORedirectURI.

2. Allow access to the base endpoint used for monitoring applications protected by the agent by
using one of the following methods:

• Create a Not Enforced URI rule for the base endpoint.

For example:
/metrics/

Note that this would allow open access to the metrics base endpoint.

For more information, see Not-Enforced URI Processing Properties.

• Create a Compound Not-Enforced URI and IP rule for the base endpoint.

A Compound Not-Enforced URI and IP rule can allow access from only the IP addresses of the
REST clients or Prometheus server.

For example, the following rule allows access to the /metrics endpoint to HTTP requests that
come from the IP address range from 192.168.1.1 to 192.168.1.3:
192.168.1.1-192.168.1.3 | */metrics/*

Post-Installation Tasks
Configuring Java Agents for SSL Communication

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 86

HTTP requests from other IP addresses would not be able to access the metrics base
endpoint.

For more information, see Not-Enforced IP Processing Properties.

• Create an authorization policy in AM to restrict access to the metrics base endpoint.

Note that the metric base endpoint does not require login credentials. You can use a policy to
ensure that requests to the endpoints are authenticated against the AM instance.

For more information, see Configuring Policies in the ForgeRock Access Management 7
Authorization Guide.

3. The Common REST performance monitoring endpoint will now be available under the path used
by the protected application, for example https://mydomain.example.com/myapp/metrics/crest.

Configure your REST clients to access the endpoint to gather performance metric data. Ensure
you include the relevant credentials if you are protecting the endpoint by using policies in AM.

4. (Optional) The Prometheus performance monitoring endpoint is available under the path used by
the protected application, for example https://mydomain.example.com/myapp/metrics/prometheus.

Configure your Prometheus server to access the endpoint to gather performance metric data.
Ensure you include the relevant credentials if you are protecting the endpoint by using policies in
AM.

To Enable Saving Metrics to CSV Files

• Writing monitoring metrics to CSV files is enabled by setting the Export Monitoring Metrics to
CSV property:

• Set to true to configure the agent to write metric information to CSV files.

• Set to false to prevent the agent from writing metric information to CSV files.

For information on where to set agent properties, see "Configuration".

For reference information on Java Agent performance metrics, see "Monitoring Reference".

Configuring Java Agents for SSL Communication
For security reasons, your environment may require that your Java agents communicate with AM over
SSL. To configure the agents, perform the steps in the following procedure:

To Configure Java Agents for SSL Communication

1. Configure AM to send cookies only when the communication channel is secure:

../../../am/7/authorization-guide/configuring-policies.html

Post-Installation Tasks
Configuring Java Agents for SSL Communication

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 87

a. In the AM console, select Realms > Realm Name > Applications > Agents > Java > Agent
Name > SSO.

b. Enable Secure Cookies. The property org.forgerock.agents.secure.cookies.enabled is set to true.

2. Import a CA certificate in the JDK truststore, usually $JAVA_HOME/jre/lib/security/cacerts. The
certificate should be either the same one configured for SSL purposes in the container where AM
is installed, or one signed with the same CA root certificate. For example:
$ keytool \
-import \
-trustcacerts \
-alias agentcert \
-file /path/to/cacert.pem \
-keystore $JAVA_HOME/jre/lib/security/cacerts

Ensure all containers where AM is installed trust the certificate stored in the JDK truststore, and
that the JDK trusts the certificates stored on the containers where AM is installed.

3. Edit the /path/to/java_agents/agent_type/agent_instance/config/OpenSSOAgentBootstrap.properties file and
add the following properties:

• javax.net.ssl.trustStore. Specifies the full path to the JDK truststore.

• javax.net.ssl.trustStorePassword. Specifies the password of the truststore.

For example:
javax.net.ssl.trustStore=/Library/Java/JavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home/jre/lib/
security/cacerts
javax.net.ssl.trustStorePassword=changeit

Note

For backward-compatibility purposes, you can also provide the truststore and the password to the agent by
specifying them as Java properties in the container's start-up sequence. For example, add them to Tomcat's
$CATALINA_OPS variable instead of specifying them in the OpenSSOAgentBootstrap.properties file:

$ export CATALINA_OPTS="$CATALINA_OPTS \
-Djavax.net.ssl.trustStore=$JAVA_HOME/jre/lib/security/cacerts \
-Djavax.net.ssl.trustStorePassword=changeit"

4. Restart the Java agent.

Post-Installation Tasks
Supporting Load Balancers and Reverse Proxies Between Clients and Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 88

Supporting Load Balancers and Reverse Proxies Between
Clients and Agents
When your environment has reverse proxies or load balancers configured between the agents and the
clients, you must perform additional configuration in the agents to account for the anonymization of
both the clients and the agents.

Failure to do so may cause policy evaluation and other agent features to fail.

For more information, see "Configuring Environments With Load Balancers and Reverse Proxies".

Upgrading Java Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 89

Chapter 6

Upgrading Java Agents
The process of upgrading a Java agent consist of uninstalling the old agent and installing a new one.
There is no requirement to create a new agent profile.

To upgrade Java agents, perform the following procedure:

To Upgrade Java Agents

1. Refer to the Release Notes for information about changes in support and functionality.

2. Back up the agent installation and the application container configuration directories. For
example:
$ cp -r /path/to/java_agents/tomcat_v7_agent /path/to/backup
$ cp -r /path/to/tomcat/webapps/agentapp /path/to/backup

If the configuration is stored centrally in AM, back it up as described in the ForgeRock Access
Management Maintenance Guide.

3. Redirect client traffic away from the protected application.

4. Stop the web application container where the Java agent is installed.

5. Remove the old Java agent.

For example, to remove an old Tomcat Java agent, see "Removing the Tomcat Java Agent". If the
uninstall process has changed, refer to the version of the Java Agent Guide that corresponds to
your Java agent.

6. Install the new agent.

For example, to install a Tomcat Java agent, see "Installing the Tomcat Java Agent".

The installer creates new OpenSSOAgentConfiguration.properties and OpenSSOAgentBootstrap.properties
files containing adequate properties for the particular agent version.

7. Review the agent configuration:

• If the agent configuration is stored in the AM configuration store, review the Release Notes and
the ForgeRock Access Management Release Notes to check what is new and possible changes
to AM and the agent. Then, adjust the agent configuration if required using the AM console.

../../../am/7/maintenance-guide/backup-restore.html
../../../am/7/maintenance-guide/backup-restore.html
../../../am/7/release-notes

Upgrading Java Agents

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 90

• If the agent configuration is stored locally, review the OpenSSOAgentConfiguration.properties file.
Use the backed-up copy of the configuration file for guidance, and the Release Notes and the
ForgeRock Access Management Release Notes to check what is new and possible changes to
AM and the agent. Then, update the file manually to contain the properties required for your
environment.

The OpenSSOAgentBootstrap.properties file created by the installer already contain bootstrap
properties relevant to the new version of the agent.

8. Ensure the communication between AM and the Java agent is secured with the appropriate keys.
For more information, see "Configuring AM Servers to Communicate With Java Agents".

9. Start the web application container where the agent is installed.

10. Validate that the Java agent is performing as expected.

For example, navigate to a protected page on the web site and confirm whether you can access it
according to your configuration.

11. Allow client traffic to flow to the protected application.

../../../am/7/release-notes

Removing Java Agents
Removing the Tomcat Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 91

Chapter 7

Removing Java Agents
The following table contains a list of sections containing information about removing Java agents on
supported platforms:

Task Section
Remove Java agents on Apache Tomcat Section
Remove Java agents on Red Hat JBoss Section
Remove Java agents on Eclipse Jetty Section
Remove Java agents on Oracle WebLogic Section
Remove Java agents on IBM WebSphere Section

Removing the Tomcat Java Agent
Complete the following procedure to remove the Tomcat Java agent:

To Remove the Tomcat Java Agent

1. Shut down the Tomcat server where the agent is installed.

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
$ agentadmin --listAgents

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
Tomcat Server Config Directory: /path/to/apache-tomcat/conf

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path of the Tomcat installation directory. For example, /path/to/apache-tomcat/conf.

Removing Java Agents
Removing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 92

Enter the complete path to the directory which is used by Tomcat Server to
store its configuration Files. This directory uniquely identifies the
Tomcat Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Tomcat Server Config Directory Path
[/opt/apache-tomcat-6.0.14/conf]: /path/to/apache-tomcat/conf

b. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory : /path/to/apache-tomcat/conf

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1
DONE.

Removing the Agent jar/locale files from the classloader directory ...DONE.

Deleting the config directory
/path/to/java_agents/tomcat_agent/Agent_001/config
...DONE.

Removing OpenAM Tomcat Agent Realm from Server XML file :
/path/to/apache-tomcat/conf/server.xml ...DONE.

Removing filter from Global deployment descriptor file :
/path/to/apache-tomcat/conf/web.xml ...DONE.

Removing OpenAM Tomcat Agent Filter and Form login authentication from Web
applications ...DONE.

Uninstall log file location:
/path/to/java_agents/tomcat_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the JBoss Java Agent
Complete the following procedure to remove the JBoss Java agent:

To Remove the JBoss Java Agent

1. Shut down the JBoss server where the agent is installed.

Removing Java Agents
Removing the JBoss Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 93

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
$ agentadmin --listAgents
The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
JBoss home directory: /path/to/jboss
JBoss domain profile name: null
JBoss deployment mode: standalone

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path to the JBoss installation directory. For example, /path/to/jboss.
Enter the complete path to the home directory of the JBoss instance.
[? : Help, ! : Exit]
Enter the path to the JBoss installation: /path/to/jboss

b. Enter the deployment mode of the JBoss installation to uninstall. Possible values are domain or
standalone.
Enter the name of the deployment mode of the JBoss installation that you wish
to use with this agent. Supported values are: domain, standalone.
[? : Help, < : Back, ! : Exit]
Enter the deployment mode of JBoss [standalone]: standalone

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the Jetty Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 94

SUMMARY OF YOUR RESPONSES

JBoss home directory : /path/to/jboss
JBoss deployment mode : standalone

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Removing Agent settings from
/path/to/jboss/standalone/configuration/standalone.xml
file ...DONE.
DONE.
DONE.

Deleting the config directory
/path/to/java_agents/jboss_agent/Agent_001/config ...DONE.

Uninstall log file location:
/path/to/java_agents/jboss_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent.

Removing the Jetty Java Agent
Complete the following procedure to remove the Jetty Java agent:

To Remove the Jetty Java Agent

1. Shut down the Jetty server where the agent is installed.

2. Run the agentadmin command with the --listAgents options to output a list of installed agent
instances. For example:
$./agentadmin --listAgents

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
Jetty Server Config Directory:
/path/to/jetty/etc

Make a note of the agent configuration details of the instance you want to remove.

a. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

Removing Java Agents
Removing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 95

b. Enter the path of the Jetty configuration directory. For example, /path/to/jetty/etc.
Enter the complete path to the directory which is used by Jetty Server to store
its configuration Files. This directory uniquely identifies the Jetty
Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Jetty Server Config Directory Path [/opt/jetty/etc]: /path/to/jetty/etc

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

SUMMARY OF YOUR RESPONSES

Jetty Server Config Directory :
/path/to/jetty/

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Removing the agent classpath from start.conf file ...DONE.

Deleting the config directory
/path/to/java_agents/jetty_agent/Agent_001/config
...DONE.

Removing Login configuration files: amlogin.conf amlogin.xml...DONE.

Removing Agent app...DONE.

Uninstall log file location:
/path/to/java_agents/jetty_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the WebLogic Java Agent
Complete the following procedure to remove the WebLogic Java agent:

To Remove the WebLogic Java Agent

1. Shut down the WebLogic server where the agent is installed.

2. Run the agentadmin with the --listAgents option to output a list of installed agent instances. For
example:

Removing Java Agents
Removing the WebLogic Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 96

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
WebLogic Server instance name: AdminServer
Startup script location:
/Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path to the startWebLogic.sh file of the WebLogic domain where you want to install
the agent. For example, /Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh.
Enter the path to the location of the script used to start the WebLogic domain.
Please ensure that the agent is first installed on the admin server instance
before installing on any managed server instance.
[? : Help, ! : Exit]
Enter the Startup script location
[/usr/local/bea/user_projects/domains/base_domain/startWebLogic.sh]: /Oracle_Home/user_projects/
domains/base_domain/startWebLogic.sh

b. Enter the name of the WebLogic instance. For example, AdminServer.
Enter the name of the WebLogic Server instance secured by the agent.
[? : Help, < : Back, ! : Exit]
Enter the WebLogic Server instance name [AdminServer]: AdminServer

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 97

SUMMARY OF YOUR RESPONSES

Startup script location :
/path/to/weblogic/mydomain/startWebLogic.sh
WebLogic Server instance name : AdminServer

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Remove amauthprovider.jar from
/path/to/weblogic/server/lib/mbeantypes
...DONE.

Deleting the config directory
/path/to/java_agents/weblogic_vs_agent/Agent_001/config
...DONE.

UnConfigure
/path/to/weblogic/mydomain/setAgentEnv_AdminServer.sh
...DONE.

Uninstall log file location:
/path/to/java_agents/weblogic_vs_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the WebSphere Java Agent
Complete the following procedure to remove the WebSphere Java Agent:

To Remove the WebSphere Java Agent

1. Shut down the WebSphere server where the agent is installed.

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
WebSphere Install Root Directory: /path/to/WebSphere/AppServer
Instance Server name: server1
Instance Config Directory:
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Make a note of the agent configuration details of the instance you want to remove.

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 98

3. Run the agentadmin command with the --uninstall option:
$ agentadmin --uninstall

a. Enter the path to the configuration directory of the server instance for the WebSphere node.
For example, /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1.
Enter the fully qualified path to the configuration directory of the Server
Instance for the WebSphere node.
[? : Help, ! : Exit]
Enter the Instance Config Directory
[/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/<hostname>Node01Cell/nodes/
<hostname>Node01/servers/server1]: /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/
DefaultCell01/nodes/DefaultNode01/servers/server1

b. Enter the name of the server instance where the agent will be removed. For example, server1.
Enter the Server Instance name.
[? : Help, < : Back, ! : Exit]
Enter the Server Instance name [server1]: server1

c. Enter the path to the WebSphere install directory. For example, /path/to/WebSphere/AppServer.
Enter the WebSphere Install Root directory.
[? : Help, < : Back, ! : Exit]
Enter the WebSphere Install Root directory
[/opt/IBM/WebSphere/AppServer]: /path/to/WebSphere/AppServer

d. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 99

SUMMARY OF YOUR RESPONSES

Instance Config Directory :
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Instance Server name : server1
WebSphere Install Root Directory : /path/to/WebSphere/AppServer

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1
Remove jars from /path/to/WebSphere/AppServer/lib/ext...DONE.

Deleting the config directory
/path/to/java_agents/websphere_agent/Agent_001/config ...DONE.

Unconfigure server.xml file
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1/server.xml
...DONE.

Uninstall log file location:
/path/to/java_agents/websphere_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Troubleshooting

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 100

Chapter 8

Troubleshooting
This chapter offers solutions to issues that may occur during installation of AM Java agents.

Solutions to Common Issues
Q: I am trying to install a Java agent, connecting to AM over HTTPS, and seeing the following error:

AM server URL: https://openam.example.com:8443/openam

WARNING: Unable to connect to OpenAM server URL. Please specify the
correct OpenAM server URL by hitting the Back button (<) or if the OpenAM
server URL is not started and you want to start it later, please proceed with
the installation.
If OpenAM server is SSL enabled and the root CA certificate for the OpenAM
server certificate has been not imported into installer JVMs key store (see
installer-logs/debug/Agent.log for detailed exception), import the root
CA certificate and restart the installer; or continue installation without
verifying OpenAM server URL.

What should I do?

A: The Java platform includes certificates from many certificate authorities (CAs). If, however, you
run your own CA, or you use self-signed certificates for HTTPS on the web application container
where you run AM, then the agentadmin command cannot trust the certificate presented during
connection to AM, and so cannot complete installation correctly.

After setting up the web application container where you run AM to use HTTPS, get the
certificate to trust in a certificate file. The certificate you want is that of the CA who signed the
container certificate, or the certificate itself if the container certificate is self-signed.

Copy the certificate file to the system where you plan to install the Java agent. Import the
certificate into a trust store that you will use during Java agent installation. If you import the
certificate into the default trust store for the Java platform, then the agentadmin command can
recognize it without additional configuration.

Export and import of self-signed certificates is demonstrated in the ForgeRock Access
Management Install Guide section Using Self-Signed Certificates.

Q: I am trying to install the WebSphere Java agent on Linux. The system has IBM Java. When I run
agentadmin --install, the script fails to encrypt the password from the password file, ending with
this message:
ERROR: An unknown error has occurred (null). Please try again.

../../../am/7/install-guide/configure-container-HTTPS.html

Troubleshooting

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 101

What should I do?

A: You must edit agentadmin to use IBMJCE, and then try again.

See "To Install With IBM Java".

Q: I have client-based (stateless) sessions configured in AM, and I am getting infinite redirection
loops. In the debug.log file I can see messages similar to the following:

2018-03-15 16:23:10.538 +0000 ERROR [c5319caa-beeb-5a44-a098-d5575e768348]state identifier not
 present in authentication state
2018-03-15 16:23:10.538 +0000 WARNING [c5319caa-beeb-5a44-a098-d5575e768348]unable to verify pre-
authentication cookie
2018-03-15 16:23:10.538 +0000 WARNING [c5319caa-beeb-5a44-a098-
d5575e768348]convert_request_after_authn_post(): unable to retrieve pre-authentication request data
2018-03-15 16:23:10.538 +0000 DEBUG [c5319caa-beeb-5a44-a098-d5575e768348] exit status: forbidden
 (3), HTTP status: 403, subrequest 0

What is happening?

A: In this case, the redirection loop happens because the client-based (stateless) session cookie is
surpassing the maximum supported browser header size. Since the cookie is incomplete, AM
cannot validate it.

To ensure the session cookie does not surpass the browser supported size, configure either
signing and compression or encryption and compression.

For more information, see the ForgeRock Access Management Security Guide.

Q: I have upgraded my agent and I see the following message in the Java agent log:
redirect_uri_mismatch. The redirection URI provided does not match a pre-registered value.

What should I do?

A: Java agents only accept requests sent to the URL specified by the Agent Root URL for CDSSO
property. For example, http://agent.example.com:8080/.

As a security measure, Java agents prevent you from accessing the agent on URLs not defined in
the Agent Root URL for CDSSO property. Add entries to this property when:

• Configuring the Alternative Agent Protocol (com.sun.identity.agents.config.agent.protocol)
property to access the agent through different protocols. For example, http://agent.example.com/
and https://agent.example.com/.

• Configuring the Alternative Agent Host Name (com.sun.identity.agents.config.agent.host)
property to access the agent through different virtual host names. For example, http://agent.
example.com/ and http://internal.example.com/.

../../../am/7/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based

Troubleshooting

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 102

• Configuring the Alternative Agent Port Name (com.sun.identity.agents.config.agent.port)
property to access the agent through different ports. For example, http://agent.example.com/ and
http://agent.example.com:8080/.

Q: After installing a Java agent on WebSphere, accessing a URL for a folder in a protected
application such as http://openam.example.com:9080/test/ results in Error 404: SRVE0190E: File not
 found: {0}, and redirection fails. What should I do to work around this problem?

A: Perform the following steps to work around the problem, by setting the WebSphere custom
property com.ibm.ws.webcontainer.invokeFiltersCompatibility=true:

1. In the WebSphere administrative console, browse to Servers > Server Types, and then click
WebSphere application servers.

2. Click the server to apply the custom property to.

3. Navigate to Configuration > Container settings > Web Container Settings > Web container.

4. Under Configuration > Additional Properties, click Custom Properties.

5. In the Custom Properties page, click New.

6. In the settings page, enter the Name com.ibm.ws.webcontainer.invokeFiltersCompatibility and
Value true for the custom property.

Some properties are case-sensitive.

7. Click Apply or OK as applicable.

8. Click Save in the Message box that appears.

9. Restart the server for the custom property to take effect.

See the IBM documentation on Setting webcontainer custom properties for additional
information.

http://www-01.ibm.com/support/docview.wss?uid=swg21284395

Reference
Configuring Java Agent Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 103

Chapter 9

Reference
This reference section covers Java agent and agent authenticator configuration properties.

Configuring Java Agent Properties
When you create the agent profile, you can choose whether to store the agent configuration in AM's
configuration store or locally to the agent installation 1. This section covers centralized configuration,
indicating the corresponding properties for use in a local configuration file where applicable. 2

After changing properties specified as Hot-swap: No, you must restart the container where the Java
agent is installed for the changes to take effect.

• "About Java Agent Properties"

• "Configuring Bootstrap Properties"

• "Configuring Global Properties"

• "Configuring Application Properties"

• "Configuring SSO Properties"

• "Configuring AM Services Properties"

• "Configuring Miscellaneous Properties"

• "Configuring Advanced Properties"

About Java Agent Properties

Property Aliases

A property alias specifies a path for a property. One property can have an unlimited number of
aliases, however, an alias must be unique.
1 See "Configuration" for more information about the agent configuration.
2The configuration file syntax is the same as of a standard Java properties file. See java.util.Properties.load() for a description
of the format.

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load%28java.io.Reader%29

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 104

Aliases starting with org.forgerock follow a naming convention to provide information about the
property.

When a property has multiple aliases, the agent evaluates the aliases in alphabetical order. If the
aliases each specify a different value for the property, the agent assigns the value specified by the
first alias in the alphabetical order, and then propagates that value to the other aliases.

The following example assigns different values to a property with three aliases:
com.sun.identity.agents.app.username=AGENT3
com.sun.identity.agents.config.profilename=AGENT1
org.forgerock.agents.profile.name=AGENT2

The agent evaluates com.sun.identity.agents.app.username first, and propagates that value to the other
aliases, resulting in this:
com.sun.identity.agents.app.username=AGENT3
com.sun.identity.agents.config.profilename=AGENT3
org.forgerock.agents.profile.name=AGENT3

Property Types
Properties can have the following types:

• String (default)

• Enumeration

• List of strings

• Map of strings

• Integer

• Boolean string, where the string true returns true, and all other strings return false.

If the value assigned to a property does not conform to the property type, the default value of the
property is assigned and an error is written to the logs.

Configuring Bootstrap Properties
Bootstrap properties are set in the config/OpenSSOAgentBootstrap.properties file.

am.encryption.pwd

When using an encrypted password, set this to the encryption key used to encrypt the agent
profile password.

org.forgerock.agents.fallback.mode.enabled

When true, the Agent runs in autonomous, "fallback" mode, independently of an AM instance.

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 105

The Agents allow access using only not-enforced rules. Access to any resource not covered by not-
enforced rules is denied. For more information, see "Autonomous "Fallback" Mode".

Default: false

Type: Boolean

Hot-swap: No

Bootstrap property: Yes

Property: org.forgerock.agents.fallback.mode.enabled, introduced in Java Agent 5.7

Alias: com.forgerock.agents.config.fallback.mode, introduced in Java Agent 5.7

com.iplanet.am.naming.url

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

org.forgerock.agents.encrypted.password

When using a plain text password, set this to the password for the agent profile, and leave am.
encryption.pwd blank.

When using an encrypted password, set this to the encrypted version of the password for the
agent profile. Use the command ./agentadmin --encrypt agentInstance passwordFile to get the
encrypted version.

Default: Empty

Type: String

Hot-swap: No

Bootstrap property: Yes

Property: org.forgerock.agents.encrypted.password, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.service.secret, introduced in Java Agent 5.5.2

org.forgerock.agents.public.am.url

Specifies the full URL of AM when it is behind a proxy during the custom login redirection flow.
For example, protocol://public_am_fqdn:port/openam.

Use this property both of the following points are true:

• Your environment uses custom login pages (non-OIDC-compliant flows), and the custom login
pages are not in the same domain as the agent.

• Your custom login pages are in a network that can only access AM using a proxy, a firewall, or
any other technology that remaps the AM URL to one accessible by the custom login pages.

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 106

Consider an example where the traffic between AM and the agent happens through the example-
internal.com network, but the custom login pages are on the example-external.com domain. The
traffic between the custom pages and AM is translated from am.example-internal.com into am.example-
external.com.

You would configure https://am.example-external.com:8443/openam as the public AM URL.

The default value is a combination of the values of AM Host, AM Port, AM Protocol, and AM Path.

org.forgerock.agents.am.path

The URI under which AM is deployed, such as /openam.

Default: Empty

org.forgerock.agents.csv.monitoring.directory

The full path to the directory where the Java agent writes debug log files and CSV files. See
Debug Logfile Directory.

Default: None

org.forgerock.agents.local.audit.file.path

The full path of the Java agent's local audit log file. See Audit Logfile Path.

Default: None; local auditing is disabled

org.forgerock.agents.lock.config.enabled

When true, specifies that an agent restart is required to allow agent configuration changes, even
for hot-swappable parameters.

Default: false

Type: Boolean

Bootstrap property: Yes

Hot-swap: No

Property: org.forgerock.agents.lock.config.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.lock.enable, introduced in Java Agent 5.5.2

org.forgerock.agents.agent.profile.realm

The realm name where the agent authenticates to AM.

Default: / (top-level realm)

org.forgerock.agents.profile.name

The profile name used to fetch agent configuration data from AM.

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 107

Default: Empty

Type: String

Hot-swap: No

Bootstrap property: Yes

Property:

• org.forgerock.agents.profile.name, introduced in Java Agent 5.5.2

• com.sun.identity.agents.app.username, introduced in Java Agent 5.5.2

• com.sun.identity.agents.config.profilename, introduced in Java Agent 5.5.2

com.sun.identity.agents.config.service.resolver

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Service Resolver Class Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The name of a service resolver class to override the ForgeRock service resolver, and instantiate a
new service resolver. Use this property to customize pre-handlers and post-handlers.

For information about how to add a custom task handler to the list of handlers the agent runs for
each resource request, and some example handlers that you can use, see "Implementing Custom
Task Handlers".

At startup, the Agent tries to instantiate the specified service resolver class. If unsuccessful, it
instantiates the original service resolver.

Use the following functions to return a list of class names to customize the task handler:

• List<String> getPreInboundTaskHandlers(): Nominated classes are executed before all other inbound
task handlers, and must implement IAmFilterTaskHandler.

• List<String> getPostInboundTaskHandlers(): Nominated classes are executed after all other inbound
task handlers, and must implement IAmFilterTaskHandler.

• List<String> getPreSelfRedirectHandlers(): Nominated classes are executed before all other self-
redirect task handlers, and must implement IAmFilterTaskHandler.

• List<String> getPostSelfRedirectHandlers(): Nominated classes are executed after all other self-
redirect task handlers, and must implement IAmFilterTaskHandler.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 108

• List<String> getPreFilterResultHandlers(): Nominated classes are executed before all other result
handlers, and must implement IAmFilterResultHandler.

• List<String> getPostFilterResultHandlers(): Nominated classes are executed after all other result
handlers, and must implement IAmFilterResultHandler.

If the named handler classes are not on the classpath, or do not implement the required interface,
then:

• Handler instantiation fails.

• A message is logged at ERROR level.

• The agent abandons processing and returns an HTTP 500, effectively denying all requests.

When a handler list is built, make sure that your function returns true if appropriate. Handlers
whose isActive is false are evicted from the handler list.

The process function for inbound and self-redirect handlers is invoked until a non-null value, such
as continue or block, is returned. The non-null value becomes the result for that resource access.
Returning null indicates to carry on to the other handlers. Any filter result handler that returns a
null value causes an error.

Manually edit in bootstrap properties: Yes

Default: ServiceResolver.class name

Type: String

Hot-swap: No

Property: org.forgerock.agents.service.resolver.class.name, introduced in Java Agent 5.6.2.1

Configuring Global Properties

This section describes global Java agent properties. After creating the agent profile, access these
properties in the AM console by navigating to Realms > Realm Name > Applications > Agents > Java
> Agent Name > Global.

• "Profile Properties"

• "General Properties"

• "Debug and Metric Properties"

• "Audit Properties"

• "User Mapping Properties"

• "Fully Qualified Domain Name Checking Properties"

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 109

Profile Properties
Group

Assign the Java agent to a previously configured group in order to inherit selected properties
from the group.

Password

The password used when creating the password file and when installing the Java agent.

If you change this password, you must modify manually the password of the bootstrap property
org.forgerock.agents.encrypted.password. For more information, see "Configuring Bootstrap
Properties".

Status

The status of the agent configuration.

Agent Profile Realm

The realm name where the agent authenticates to AM.

Default: / (top-level realm)

Type: String

Hot-swap: No

Property: org.forgerock.agents.agent.profile.realm, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.organization.name, introduced in Java Agent 5.5.2

Configuration Enabled

When true, specifies that an agent restart is required to allow agent configuration changes, even
for hot-swappable parameters.

Default: False

Type: Boolean

Bootstrap property: Yes

Hot-swap: No

Property: com.sun.identity.agents.config.lock.enable, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.organization.name, introduced in Java Agent 5.5.2

Configuration Repository

The location of the Java agent configuration:

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 110

• LOCAL: Configuration is read from OpenSSOAgentConfiguration.properties only.

Add the following property to the bootstrap file: com.sun.identity.agents.config.repository.
location=local

• REMOTE: Configuration is downloaded from AM.

• CENTRALIZED: This deprecated value will be substituted for REMOTE.

For more information, see "Configuration".

Note

At startup, the agent reads the bootstrap properties file, and then the configuration properties file. 3.

If this property is set to LOCAL, the agent will use all of the properties it has retrieved and continue working.

If this property is set to CENTRALIZED or is not defined at all, the agent will ignore all values from the
configuration properties file, and while retaining the retrieved bootstrap properties, download its
configuration from AM.

To revert to centralized mode, remove the com.sun.identity.agents.config.repository.location
property in the bootstrap file, and then restart the agent's container.

Default: REMOTE

Type: Constrained string

Requires restart if changed: Yes

Property: org.forgerock.agents.config.location, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.repository.location, introduced in Java Agent 5.5.2

Configuration Reload Interval

The time interval in seconds after which the Java agent reloads the agent profile if it has been
changed since it was last read. The agent configuration location is given in Configuration
Repository.

Tip

Notifications ensure that Java agents with centralized configuration reload the configuration when
the administrator makes a change to a hot-swappable configuration property. Enable this property if
notifications are disabled or if the Java agent stores its configuration locally.

Default: 0; disabled

Type: Integer

3 These files are /path/to/java_agents/agent_type/agent_instance/config/OpenSSOAgentBootstrap.properties and /
path/to/java_agents/agent_type/agent_instance/OpenSSOAgentConfiguration.properties, respectively.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 111

Hot-swap: Yes

Property: org.forgerock.agents.config.reload.seconds, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.load.interval, introduced in Java Agent 5.5.2

Fall-Forward Mode

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Determines how the Agent behaves when AM is unavailable, and when org.forgerock.agents.
fallback.mode.enabled is NOT enabled (default behavior):

• false: The Agent denies every incoming request for a resource, with an HTTP 403, even if the
resource matched a not enforced rule at the time that AM became unavailable.

• true: The Agent allows every incoming request for a resource matched by a not enforced rule,
until AM is available, and a config change notification tells the agent to reload the not enforced
rules.

Default: false

Type: Boolean

Hot-swap: Yes

Bootstrap property: No

Property: org.forgerock.agents.fallforward.mode.enabled, introduced in Java Agent 5.7

JWT Cookie Name

Specifies the name of the cookie that holds the OpenID Connect JSON web token (JWT) on the
user's browser.

Before changing the name of this cookie, consider the following points:

• This cookie is only used by the Java agent and is never presented to AM.

• The cookie name must be unique across the set of cookies the user's browser receives, because
some browsers behave in unexpected ways if they receive several cookies with the same name.
For example, do not set the JWT cookie name to iPlanetDirectoryPro, which is the default name of
AM's session cookie.

Default: am-auth-jwt

Type: String

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 112

Hot-swap: Yes

Property: org.forgerock.agents.jwt.cookie.name, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.jwt.name, introduced in Java Agent 5.5.2

Convert SSO Tokens into OpenID Connect JWTs

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies whether the agent should convert SSO tokens (iPlanetDirectoryPro cookies) into OpenID
Connect JWTs, to make them compliant with the agent's default login redirection mode.

Set this property to allow users to access resources protected by both Java Agents 3.5.x (which
use SSO tokens) and 5.x (which use OpenID Connect JWTs). Converting the SSO token to a JWT
negates the need for additional redirection or re-authentication.

When this property is enabled, the agent makes a request to AM to exchange the SSO token for a
JWT.

Tip

The client application is responsible for appending the JWT to subsequent calls to protected resources.
Failure to do so causes the agent to request additional JWTs from AM.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.accept.ipdp.cookie.enabled, introduced in Java Agent 5.7

Alias: com.forgerock.agents.accept.ipdp.cookie , introduced in Java Agent 5.6.2.1

JWT Cookie Domain List

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

A list of domains in which the Agent attempts to creates JWT cookies:

• If the list is empty, the agent creates cookies only in its own domain.

• If the agent is running behind a browser, it can create cookies only in its own domain.

• If the agent is running behind a proxy, it should be able to create cookies in any required
domains.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 113

Default: Empty

Type: List of strings

Hot-swap: Yes

Bootstrap property: Yes

Property: org.forgerock.agents.jwt.cookie.domain.list, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cdsso.domain, introduced in Java Agent 5.5.2

Secure Cookies

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

When true, the agent marks cookies as secure, sending them only if the communication channel is
secure. Set to true when agent connections are over SSL.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.jwt.cookie.secure.enabled, introduced in Java Agent 5.6.2.1

Balance WebSocket Connection Interval Minutes

The time in minutes before WebSockets to AM are killed and reopened. This property helps
ensure a balanced distribution of connections across the AM servers on the site.

Default: 30

Type: Integer

Hot-swap: Yes

Property: org.forgerock.agents.balance.websocket.interval.minutes, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.balance.websocket.connection.interval.in.minutes, introduced
in Java Agent 5.5.2

JWT Cache Size

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The maximum number of entries in the JWT cache.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 114

Default: 5000

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.jwt.cache.size, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.jwt.cache.size, introduced in Java Agent 5.5.2

JWT Cache TTL

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time in minutes after which entries in the JWT cache timeout and are purged.

Parsing JWTs is a CPU intensive process. Because all JWTs in the cache have already been
parsed, it is advantageous to configure a long timeout for this cache.

Default: 30

Type: Integer

Hot swap: No

Property: org.forgerock.agents.jwt.cache.ttl.minutes, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.jwt.cache.ttl.minutes, introduced in Java Agent 5.5.2

Exchanged SSO Token Cache Time to Live

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time in minutes after which entries in the SSO token exchange cache timeout and are
purged.

The returned JWT is cached against the relevant SSO token. If the same SSO token is presented
again, before the cache expires, the agent does not need to request a new JWT from AM. Instead,
it retrieves the correct JWT from its cache.

Because exchanging SSO tokens for JWTs is an expensive process, previously exchanged SSO
tokens are cached. When an entity is unable to permanently store its JWT in a cookie, calls to AM
can be avoided.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 115

Default: 5

Type: Integer

Hot swap: No

Property: org.forgerock.agents.sso.exchange.cache.ttl.minutes, introduced in Java Agent 5.6.2.1

Exchanged SSO Token Cache Size

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The maximum number of entries in the SSO Exchange cache, used in the exchange of an SSO
tokens for a JWT.

When the maximum is reached, the oldest records are overwritten.

Default: 100

Type: Integer

Hot swap: No

Property: org.forgerock.agents.sso.exchange.cache.size, introduced in Java Agent 5.6.2.1

Agent Root URL for CDSSO

The Java agent root URL for CDSSO. The valid value is in the format protocol://hostname:port/
where protocol represents the protocol used, such as http or https, hostname represents the host
name of the system where the Java agent resides, and port represents the port number on which
the Java agent is installed. The slash following the port number is required.

If the server where the Java agent is installed has virtual host names, add URLs with the virtual
host names to this list as well. AM checks that goto URLs match one of the Java agent root URLs
for CDSSO.

Default: agent-root-URL

Property: sunIdentityServerDeviceKeyValue[n]

General Properties

Idle Time Refresh Windows

+ Not available in the console for AM 6.5.x and earlier versions.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 116

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time interval, in minutes, the agent waits before calling AM to refresh a the session's idle
timeout.

Sessions in AM have an idle timeout after which they expire. In general, when users access
protected resources through an agent, the agent requests a policy decision on behalf of that user,
which resets the idle timeout.

When the agent does not need to reach out to AM frequently, for example, when policy evaluation
is already cached, sessions may unexpectedly expire in AM due to idle timeout before the user
has finished accessing the application.

Agents make one call per active user session at the end of the time interval, provided that the
user is actively accessing the application or site. If the user does not access the application
during the configured window interval time, the agent will not make the call to AM at the end of
the interval. Eventually, if the user is inactive for enough time, AM will log them out when the
session reaches its idle timeout.

Configuring the idle timeout window to a short value, such as one minute, achieves a good
balance between making additional calls to AM and providing a good user experience.

Increase this value only if the performance impact of making an extra call to AM every minute is
noticeable enough in your environment.

Default: 1

Type: Integer

Hot-swap: yes

Property: org.forgerock.agents.idle.time.window.minutes, introduced in Java Agent 5.6.2.1

Internal Monitoring URI

A dummy endpoint that when invoked produces information about the current Agent properties.

Default: /agentapp/propertyInfo

Type: URI string

Hot-swap: Yes

Property: org.forgerock.agents.property.info.endpoint.uri, introduced in Java Agent 5.5.2

HTTP Session Binding

When true, the Java agent invalidates the HTTP session upon login failure, when the user has no
SSO session, or when the principal user name does not match the SSO user name.

../../../am/7/reference/global-services-configuration.html#global-session-dynamic-attributes

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 117

Default: true

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.http.session.binding.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.httpsession.binding, introduced in Java Agent 5.5.2

Login Attempt Limit

When set to a value other than zero, this defines the maximum number of failed login attempts
allowed during a single browser session, after which the Java agent blocks requests from the
user.

Default: 0 (disabled)

Type: Integer

Hot-swap: Yes

Property: org.forgerock.agents.login.attempt.limit.count, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.login.attempt.limit, introduced in Java Agent 5.5.2

Login Attempt Limit Cookie Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The name of the cookie used to record the number of login attempts.

Default: amFilterParam

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.login.counter.cookie.name, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.login.counter.name, introduced in Java Agent 5.5.2

Custom Response Header

Custom headers the Java agent sets for the client. The key is the header name. The value is the
header value. For example, org.forgerock.agents.response.header.map[Cache-Control]=no-cache.

Default: Empty

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 118

Type: Map, with format from header name:to header name

Hot-swap: Yes

Property: org.forgerock.agents.response.header.map[HEADER_NAME]=HEADER_VALUE, introduced in Java
Agent 5.5.2

Alias: com.sun.identity.agents.config.response.header, introduced in Java Agent 5.5.2

Redirect Attempt Cookie Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Detect redirect loops while authenticating, which can indicate a cookie domain problem. The
Agent does this by using a cookie to hold the current redirection count.

Default: amFilterRDParam

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.redirect.cookie.name, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.redirect.cookie.name, introduced in Java Agent 5.5.2

Redirect Attempt Limit

When set to a value other than zero, this defines the maximum number of redirects allowed for a
single browser session, after which the Java agent blocks the request.

Default: 0

Type: Integer

Hot-swap: Yes

Property: org.forgerock.agents.redirect.attempt.limit, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.redirect.attempt.limit, introduced in Java Agent 5.5.2

Debug and Metric Properties

Debug Level

Debugging messages are logged at the following levels.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 119

• OFF: No logging is performed, except for critical errors which cannot be disabled.

• ERROR: Only errors are logged.

• WARNING: Errors and warnings are logged.

• MESSAGE: Errors, warnings and informative messages are logged.

• TRACE: Highest level of logging available.

• ON: Highest level of logging that is written to the standard output, as opposed to file.

Note that not all containers are good at capturing messages logged to the standard output, and
warnings or critical errors can easily disappear forever.

Default: ERROR

Type: Constrained string

Property: org.forgerock.agents.debug.level, introduced in Java Agent 5.5.2

Alias: com.iplanet.services.debug.level, introduced in Java Agent 5.5.2

Debug File Rotation Prefix

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

A prefix to append to the start of the log file name.

Default: Empty

Type: String

Property: org.forgerock.agents.debug.prefix, introduced in Java Agent 5.7

Alias: org.forgerock.openam.debug.prefix, introduced in Java Agent 5.7

Debug File Rotation Suffix

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

A suffix to append to the end of the log file name when it is rotated. For example, -yyyy.MM.dd-HH.
mm. Note that file rotation can be disabled.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 120

The suffix can be defined freely, however, if it does not include a timestamp that produces
different file names when the rotation time is reached, log file rotation can fail. Invalid values
produce exceptions in the container logs or agent logs.

Default: Empty. If log rotation is disabled, nothing is appended to the log file name. If log rotation
is enabled and this property is not set, the value -yyyy.MM.dd-HH.mm is used.

Type: String. For information about how to configure this property, see the java.text.
SimpleDateFormat Java class in the Java SDK's documentation.

Property: org.forgerock.agents.debug.suffix, introduced in Java Agent 5.7

Alias: org.forgerock.openam.debug.suffix, introduced in Java Agent 5.7

Debug File Rotation Size

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The approximate size in bytes at which a log file is rotated to a new log file.

If this property is set, and no value is assigned to Debug File Rotation Suffix, the suffix -yyyy.MM.
dd-HH.mm is used.

Default: Not set; file rotation is disabled

Type: Integer

Property: org.forgerock.agents.debug.rotation.size.bytes, introduced in Java Agent 5.7

Alias: org.forgerock.openam.debug.rotation.maxsize, introduced in Java Agent 5.7

Debug Log File Rotation Time

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time in minutes, after which a log file is rotated to a new log file.

If this property is set, and no value is assigned to Debug File Rotation Suffix, the suffix -yyyy.MM.
dd-HH.mm is used.

Default: Not set; file rotation is disabled

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 121

Type: Integer

Property: org.forgerock.agents.debug.rotation.time.minutes, introduced in Java Agent 5.7

Alias: org.forgerock.openam.debug.rotation, introduced in Java Agent 5.7

Debug File Rotation Retention Count

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The number of log files to retain after rotation. For example, specifying 10 would give you a
current debug file, and nine older, rotated files.

When the specified limit is reached, the oldest log file is deleted when a file rotation occurs.

Default: None; all rotated log files are kept

Type: Integer

Property: org.forgerock.agents.debug.retention.count, introduced in Java Agent 5.7

Debug Logfile Directory

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The full path to the directory where the Java agent writes debug log files and CSV files.

Default: None; no logging occurs until a value for this property is provided. Anything logged is
written to the standard output and possibly the container log file.

Type: String

Hot swap: No

Bootstrap property: Yes

Property: org.forgerock.agents.csv.monitoring.directory, introduced in Java Agent 5.7

Alias: com.iplanet.services.debug.directory, introduced in Java Agent 5.5.2

Export Monitoring Metrics to CSV

+ Not available in the console for AM 6.5.x and earlier versions.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 122

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When true, enables the export of Java agent performance monitoring metrics to comma-separated
value (CSV) files.

The monitoring .csv files are written the same directory as the agent instance debug files, for
example in /path/to/java_agents/tomcat_agent/Agent_001/logs/debug/.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.monitoring.to.csv.enabled, introduced in Java Agent 5.5.2

Alias: org.forgerock.agents.config.monitoring.to.csv, introduced in Java Agent 5.5.2

Audit Properties
Audit Types

The type of messages to audit. Valid values include:

• LOG_NONE: Disable audit logging.

• LOG_ALLOW: Audit allowed requests

• LOG_DENY: Audit denied requests.

• LOG_BOTH: Audit allowed and denied requests.

Default: LOG_NONE

Type: Constrained string

Hot-swap: Yes

Property: org.forgerock.agents.audit.what, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.audit.accesstype, introduced in Java Agent 5.5.2

Audit Log File Location

The location where the Java agent logs audit messages. If Audit Types is LOG_NONE, this property
has no effect. Valid values include:

• NONE: Disable audit logging.

• LOCAL: Log audit event messages locally to the agent installation.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 123

• REMOTE. Log audit event messages to the audit event handler configured in the AM realm.

• ALL. Log audit event messages locally and to the audit event handler configured in the AM
realm.

Default: NONE

Type: Constrained string

Hot-swap: yes

Property: org.forgerock.agents.audit.where, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.log.disposition, introduced in Java Agent 5.5.2

Audit Log Rotation Enabled

When true, rotate local audit log files that have reached the size specified by the Local Audit Log
File Rotation Size property.

Default: False

Hot-swap: yes

Property: org.forgerock.agents.local.audit.log.rotation.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.local.log.rotate, introduced in Java Agent 5.5.2

Local Audit Log File Rotation Size

The maximum size in bytes of the local audit log files. When audit log rotation is enabled, the Java
agent rotates the log file when it reaches this size.

Default: 52428800

Type: Integer

Hot-swap: yes

Property: org.forgerock.agents.local.audit.log.rotation.bytes, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.local.log.size, introduced in Java Agent 5.5.2

Audit Logfile Retention Count

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The number of audit log files to retain after rotation. For example, specifying 10 would give you a
current log file, and nine older, rotated files.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 124

When the specified limit is reached, the oldest log file is deleted when a file rotation occurs.

Default: All rotated log files are kept

Type: Integer

Property: org.forgerock.agents.local.audit.log.retention.count, introduced in Java Agent 5.7

Audit Logfile Path

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The full path of the Java agent's local audit log file.

Default: None; local auditing is disabled

Type: String

Hot swap: No

Bootstrap property: Yes

Property: org.forgerock.agents.local.audit.file.path, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.local.logfile, introduced in Java Agent 5.5.2

Remote Log File Name

 This property does not apply to Java Agents 5.7, although it may appear in the AM console.

Property: com.sun.identity.agents.config.remote.logfile

User Mapping Properties
User Mapping Mode

Specifies where to obtain the user ID, as follows:

• USER_ID: The agent reads the property User DN Flag:

• If true, the user ID is set to the principal user name.

• If false, the user ID is set to the value of the session property specified by User Session
Property Name.

• PROFILE_ATTRIBUTE. The user ID is set to the value of a named profile attribute specified by User
Attribute Name.

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 125

• HTTP_HEADER. The user ID is set to the value of a named HTTP header specified by User Attribute
Name.

• SESSION_PROPERTY. The user ID is set to the value of a named session property specified by User
Attribute Name.

If the user ID cannot be set, the user is not logged in and access requests are denied.

Default: USER_ID

Type: Constrained string

Property: org.forgerock.agents.user.mapping.mode, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.user.mapping.mode, introduced in Java Agent 5.5.2

User Attribute Name

When the User Mapping Mode is HTTP_HEADER, this property is the name of the HTTP header
attribute to identify the user. The named header must be present in the incoming headers.

Default: employeenumber

Type: String

Property: org.forgerock.agents.user.mapping.mode.attribute.name, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.user.attribute.name, introduced in Java Agent 5.5.2

User DN Flag

When User Mapping Mode is USER_ID, this flag indicates whether to identify the user through the
user DN, as follows:

• If true, the DN is taken from universalId, retrieved from the AM user session info.

• If false, the user is identified by the value of USER_ID_MODE_SESSION_PROPERTY_NAME.

Default: false

Type: Boolean

Property: org.forgerock.agents.userid.mapping.mode.use.dn.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.user.principal, introduced in Java Agent 5.5.2

User Session Property Name

When User Mapping Mode is USER_ID and User DN Flag is false, the user is identified by the value
of this property.

Default: UserToken

Reference
Configuring Global Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 126

Type: String

Property: org.forgerock.agents.userid.mapping.mode.use.session.property.name, introduced in Java
Agent 5.5.2

Alias: com.sun.identity.agents.config.user.token, introduced in Java Agent 5.5.2

Fully Qualified Domain Name Checking Properties

FQDN Check

Enables checking of the FQDN default value and FQDN map value.

Default: false

Type: Boolean

Property: org.forgerock.agents.fqdn.check.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.fqdn.check.enable, introduced in Java Agent 5.5.2

FQDN Default

The default FQDN to use for the incoming server, if the agent cannot find a value in the FQDN
map. If this property is not defined, FQDN checking is disabled.

This property ensures that when users access protected resources on the web server without
specifying the FQDN, the Java agent can redirect the users to URLs containing the correct FQDN.

Note

If you add an FQDN to this property, you must also add it to the Agent Root URL for CDSSO property.

Default: Empty

Type: String

Property: org.forgerock.agents.fqdn.default, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.fqdn.default, introduced in Java Agent 5.5.2

FQDN Map

Maps invalid server names to valid server names. Map keys are case-insensitive.

Default: Empty

Type: Map, with format invalid server name:valid server name

Property: org.forgerock.agents.fqdn.map, introduced in Java Agent 5.5.2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 127

Alias: com.sun.identity.agents.config.fqdn.mapping, introduced in Java Agent 5.5.2

Configuring Application Properties

After creating the agent profile, access the following properties in the AM console by navigating to
Realms > Realm Name > Applications > Agents > Java > Agent Name > Application.

This section describes the following property groups:

• Login Processing Properties

• Logout Processing Properties

• Access Denied URI Processing Properties

• Not-Enforced Processing Properties

• Not-Enforced URI Processing Properties

• Not-Enforced IP Processing Properties

• Profile Attributes

• Response Attributes

• Common Attributes Fetching Processing Properties

• Session Attributes

• Privilege Attributes Processing Properties

• Custom Authentication Processing Properties

• Continuous Security Properties

• Query Parameter Handling Properties

• Authentication Failure Properties

Login Processing Properties

Login Form URI

Specifies the list of absolute URIs corresponding to a protected application's web.xml form-login-
page element, such as /myApp/jsp/login.jsp.

Default: Empty

Property: com.sun.identity.agents.config.login.form

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 128

Login Error URI

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Specifies the list of absolute URIs corresponding to a protected application's web.xml form-error-
page element, such as /myApp/jsp/error.jsp.

Default: Empty

Property: com.sun.identity.agents.config.login.error.uri

Use Internal Login

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

When enabled, the Java agent uses the internal default content file for the login.

Default: true

Property: com.sun.identity.agents.config.login.use.internal

Login Content File Name

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Full path name to the file containing custom login content when Use Internal Login is enabled.

Default: FormLoginContent.txt

Property: com.sun.identity.agents.config.login.content.file

Redirect to AM's Success URL

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

• true: The agent redirects to the success URL specified in the AM service, if any.

If no success URL is specified in AM, the agent redirects to the original requested URL, if any.

• false: The agent redirects to the requested URL, if any.

For more information about configuring success URLs in AM, see Configuring Success and
Failure Redirection URLs.

Default: false

Type: Boolean

../../../am/7/authentication-guide/redirection-url-precedence.html
../../../am/7/authentication-guide/redirection-url-precedence.html

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 129

Hot-swap: Yes

Property: org.forgerock.agents.authn.success.redirect.session.url.enabled, introduced in Java Agent
5.6.3

Authentication Exchange URI

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Allows the administrator to define an endpoint to facilitate the exchange of SSO tokens for OIDC
JWTs.

Default: Empty

Type: String (URL of a dummy endpoint within the Agent)

Hot-swap: Yes

Property: org.forgerock.agents.authn.exchange.uri, introduced in Java Agent 5.7

Authentication Exchange Cookie Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Allows the administrator to define an endpoint to facilitate the exchange of SSO tokens for OIDC
JWTs.

Default: Empty

Type: String (valid cookie name)

Hot-swap: Yes

Property: org.forgerock.agents.authn.exchange.cookie.name, introduced in Java Agent 5.7

Logout Processing Properties

Application Logout Handler

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.application.handler

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 130

Application Logout URI

A map of request URIs that cause logout of the user session when invoked. Use the key:value
format web application name:logout URI.

To set a global logout URI for applications without other logout URIs defined, leave the key
empty, and set the value as /logout.jsp.

To set a logout URI for a specific application, set the key to the name of the application, and set
the value to the value of application logout page.

Default: Empty

Type: Map, with format application name:logout URI

Hot-swap: Yes

Property: org.forgerock.agents.logout.endpoint.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.logout.uri, introduced in Java Agent 5.5.2

Logout Request Parameter Map

Map of parameters in the HTTP request that trigger logout events. Use the key:value format
application name:parameter name to trigger logout.

To set a global logout request parameter for applications without other logout request
parameters defined, leave the key empty, and set the value to logoutparam.

To set a logout URI for a specific application, set the key to the name of the application, and set
the value to an application logout request parameter, such as logoutparam.

Default: Empty

Type: Map, with format application name:HTTP parameter name

Hot-swap: Yes

Property: org.forgerock.agents.logout.request.param.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.logout.request.param, introduced in Java Agent 5.5.2

Logout Introspect Enabled

When true, the Java agent checks the HTTP request body to locate the value of Logout Request
Parameter Map.

Default: false

Type: Boolean

Hot-swap: Yes

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 131

Property: org.forgerock.agents.logout.introspection.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.logout.introspect.enabled, introduced in Java Agent 5.5.2

Logout Goto URI

A map of request URIs to go to after logout using an endpoint defined in Application Logout URI.

To set a global URI for applications without other logout URIs defined, leave the key empty, and
set a return URI such as /return.html.

To set a logout URI for a specific application, set the key to the name of the application, and set
the return URI to the value of application logout entry URI, such as /myApp/return.html.

Default: Empty

Type: Map, with format application name:goto URI

Hot-swap: Yes

Property: org.forgerock.agents.logout.goto.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.logout.entry.uri, introduced in Java Agent 5.5.2

Access Denied URI Processing Properties

Resource Access Denied URI

The URIs of custom pages to return when access is denied. The key is the web application name.
The value is the custom URI.

To set a global custom access denied URI for applications without other custom access denied
URIs defined, leave the key empty and set the value to the global custom access denied URI, /
sample/accessdenied.html.

To set a custom access denied URI for a specific application, set the key to the name of the
application, and the value to the application access denied URI, such as /myApp/accessdenied.html.

Tip

Specify a full URL if required, including the host name. For example: https://help.example.com/errors/
accessdenied.html.

Default: Empty

Type: Map, with format application name:URI

Hot-swap: Yes

Property: org.forgerock.agents.access.denied.uri.map, introduced in Java Agent 5.5.2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 132

Alias: com.sun.identity.agents.config.access.denied.uri, introduced in Java Agent 5.5.2

Not-Enforced Processing Properties

Not-Enforced Compound Rules Separator

Specifies a delimiter for the not-enforced compound rules. The delimiter can be a single character
or a string. For example, setting the delimiter to && allows compound rules to be specified as:
GET 10.5.1.5 100.2.21.36 && /public/*
REGEX 10\.4\.3\.5 && [^/]+\/free.jpg

Default: | (pipe)

Type: String

Hot-swap: Yes

Property:org.forgerock.agents.notenforced.compound.separator, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.rule.compound.separator, introduced in Java Agent
5.5.2

Not-Enforced URI Processing Properties

For information about not-enforced rule evaluation and caching, see "Not-Enforced Lists".

Not-Enforced URIs

A space-delimited list of URIs that do not require authentication. The following example requires
no authentication to access content in the /public and /images paths:
/public/* /images/*

Use the following format to specify not-enforced URIs in a local configuration file, where n is a
unique, incrementing integer:
org.forgerock.agents.notenforced.uri.list[n]=Not enforced URI Rule

Percent-encode (URL-encode) spaces or other reserved characters. For example, /my%20public
%20app/.

Use the following options to fine-tune the list of not-enforced URIs:

• Inverting Rules

• Invert specific rules in the not-enforced URI list: Precede the rule with the keyword NOT,
separated by a space (blank) character. In the following example, any request for a .jpg file in
the /private URI requires authentication:
NOT /private/*.jpg

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 133

• Invert all rules in the not-enforced URI list: Set the Invert Not-Enforced URIs property to true.

• Wildcards

• *: Use this wildcard to match all characters in a not-enforced URI rule, except the question
mark ? character. The wildcard cannot be escaped, and spans multiple levels in a URI. For
example:
/images/*
/*.jsp?locale=*

Multiple forward slashes do not match a single forward slash. Therefore * matches mult/iple/
dirs, but mult/*/dirs does not match mult/dirs.

• -*-: Use this wildcard to match all characters in a not-enforced URI rule, except the forward
slash / and the question mark ? character. The wildcard cannot be escaped. Because this
wildcard does not match the / character, it does not span multiple levels in a URI. For
example:
/css/-*-

Consider the following points when using wildcards:

• Using * and -*- wildcards in the same rule is not supported. However, you can use them in
different rules in the same list. For example:
/css/-*-
/images/*

• Multiple wildcards in the query parameter section of a not-enforced URI rule match the
parameters in any order that they appear in a resource URI. For example, the following not-
enforced URI rule applies to any resource URI that contains a member_level and location query
parameter, in any order:
/customers/*?*member_level=*&location=*

In following example, the requests would be not-enforced:

https://www.example.com/customers/default.jsp?member_level=silver&location=fr
https://www.example.com/customers/default.jsp?location=es&member_level=silver
https://www.example.com/customers/default.jsp?location=uk&vip=true&member_level=gold

If the parameters are not present in the request, the agent falls back to evaluating the
resource URI against policies in AM, as usual.

• Trailing forward slashes are not recognized as part of a resource name. Therefore, /images//
and /images are equivalent.

For more information about using wildcards, see Specifying Resource Patterns with Wildcards.

• Regular Expressions

../../../am/7/authorization-guide/configuring-resource-types.html#create-resource-type-xui

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 134

To use a regular expression in a not-enforced URI rule, add the keyword REGEX followed by a
blank (space) character before the URI. For example:
REGEX https?://www\.example\.com/([^/])+/.*\.jpg

Consider the following points when using regular expressions:

• Using classic wildcards and regular expressions in the same rule is not supported.

• If an invalid regular expression is specified in a rule, the rule is dropped and an error
message is logged.

• HTTP Methods

To apply not-enforced rules only when the incoming request uses a specific HTTP method, add
one or more of the following keywords to the not-enforced rule: GET, HEAD, POST, PUT, PATCH, DELETE,
OPTIONS, TRACE.

By default, no HTTP method is specified for a rule, and all methods are not-enforced for that
rule. The following example does not require authentication for any request method to /public:
/public/*

When one or more HTTP methods are specified for a rule, the specified methods are not-
enforced, but unspecified methods are enforced and require authentication.

The following example does not require authentication for GET requests to /public, but does
require authentication for other HTTP methods:
GET /public/*

To specify a list of methods, add a comma-delimited list of methods, followed by a blank (space)
character before the URL to match. The following example does not require authentication for
GET and POST requests to /public:
GET,POST /public/*
GET,POST,PUT /examples/notenforced/*.jpg
GET,REGEX https?://www\.example\.com/([^/])+/.*\.jpg

To invert a method, add an exclamation mark ! character in front of it. The following example
requires authentication for POST requests to /public, but but does not require authentication for
other HTTPS methods:
!POST /public/*

Unrecognized keywords in a rule are ignored and do not invalidate the rest of the rule.

• Cookie Values

To apply not-enforced rules when the incoming request has a named cookie with a specified
value, use the following syntax:

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 135

COOKIE(Name/Value/Modifiers) Not Enforced URIs

Name

The name of the cookie to inspect for the specified value. By default, the search is case-
sensitive.

Value

A string to search for in the value field of the specified cookie. By default, the search is
case-sensitive.

Modifiers

One or more modifiers to change the lookup method:

c

Perform a case-insensitive search for the cookie name.

i

Perform a case-insensitive search for the cookie value.

r

Treat the string specified in Value as a regular expression.

The following example does not require authentication for requests to /private/admin/images/,
when the request contains a cookie named login_result (case-insensitive), with the value VALID
(case-insensitive):
COOKIE(login_result/VALID/ci) /private/admin/images/*

You can combine cookie filters with other filters, such as HTTP methods.

The following example does not require authentication for GET, POST, and PUT requests to the
/other/records/ folder, when the request contains a cookie named internal (case-sensitive), with a
value that matches the regular expression .*ID (case-insensitive):
GET,POST,COOKIE(internal/.*ID/ri),PUT /other/records/*.html

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND;
both expressions must match in order to apply. To apply the rules as a logical OR, create two
separate rules.

• Header Values

To apply not-enforced rules when the incoming request has a named header with a specified
value, use the following syntax:

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 136

HEADER(Name/Value/Modifiers) Not Enforced URIs

Name

The case-insensitive name of the header to inspect for the specified value.

Value

A string to search for in the value field of the specified header.

Modifiers

i

Perform a case-insensitive search for the header value. By default, the search is case-
sensitive.

r

Treat the string in Value as a regular expression.

The following example allows access to .txt files in /yearly/2019/ when the request contains a
header named ID (case-insensitive), with the value validated (case-insensitive):
HEADER(ID/validated/i) /yearly/2019/*.txt

You can combine cookie filters with other filters, such as HTTP methods.

The following example allows GET, POST, and PUT HTTP requests to HTML resources in the /other/
records/ folder when the request contains a header named internal (case-insensitive), with a
value that matches the regular expression .*ID (case-insensitive):
GET,POST,HEADER(internal/.*ID/ri),PUT /other/records/*.html

Combining a HEADER and COOKIE expression in the same rule implies a logical AND; both
expressions must match. To apply the rules as a logical OR, create two separate rules.

• Compound Not-Enforced Rules

Compound not-enforced rules allow you to combine not-enforced URI and IP rules in a single
rule. They can be configured either in the Not-Enforced URIs or the Not-Enforced Client IP List
properties.

To write not-enforced URI and IP rules, follow the guidelines explained in Not-Enforced IP
Processing Properties and Not-Enforced URI Processing Properties.

The format for compound rules requires the IP rule or list of IP rules, a delimiter, by default
the horizontal line | character, and the URI rule or list of URI rules. Blank (space) characters
around the delimiter are optional. For example:
192.168.1.1-192.168.4.3 | /images/*

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 137

In the example, the agent will not enforce any HTTP requests coming from the ip range 192.168.
1.1-192.168.4.3 to any file (*) in the /images URI.

When configuring compound rules, consider the following points:

• Keywords, such as HTTP methods, NOT, and REGEX, are required at the beginning of the
compound rule, and affect both the IP and the URI rules. For example:
GET,POST 192.168.1.1-192.168.4.3 | /images/*

In the preceding example, the agent will not enforce GET and POST HTTP requests coming from
the ip range 192.168.1.1-192.168.4.3 to any file (*) in the /images URI.
NOT,!POST 192.168.1.* | /private/*

In the preceding example, the agent will defer to AM (NOT keyword) any request done to all
supported HTTP methods but POST (!) coming from any ip address in the 192.168.1 subnet to
any file (*) in the /private URI.

• When working with the REGEX keyword, ensure both sides of the rule can be parsed as a
regular expression. For example:
POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Note that the delimiter in the previous example is &&. This is because the | character can
lead to invalid regular expressions. To configure a different delimiter, see the Not-Enforced
Compound Rules Multi-Value Separator property in Not-Enforced Processing Properties.

• When dealing with compound rules, the agent caches hits and misses for each resource
accessed. IP and URI not-enforced lists have a property each to enable or disable their
caches; for compound rules, caching is enabled if either the IP or URI not-enforced cache is
enabled. The size of its cache has the size of the larger of the two IP or URI cache sizes.

For more information about not-enforced rule evaluation and caching, see "Not-Enforced
Lists".

• Encoding Internationalized Resource Identifiers (IRIs)

To match a resource that uses non-ASCII characters, percent-encode the resource when
creating the rule.

For example, to match resources under an IRI such as http://www.example.com/forstå, specify the
following percent-encoded rule:
/forst%C3%A5/*

Default: Empty

Type: List of URIs

Hot-swap: Yes

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 138

Property: org.forgerock.agents.notenforced.uri.list, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.uri, introduced in Java Agent 5.5.2

Invert Not-Enforced URIs

When true, enforce policy for the URIs and patterns specified in Not-Enforced URIs instead of
allowing access to them without authentication.

Caution

For security considerations, do not enable this property. Instead, ForgeRock recommends using the NOT
keyword to invert specific rules in the Not-Enforced URI list.

Default: false

Type: Boolean

Hot-swap: No

Property: org.forgerock.agents.notenforced.uri.invert.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.uri.invert, introduced in Java Agent 5.5.2

Not-Enforced URIs Cache Enabled

When true, the agent caches evaluation (hits and misses) of the Not-Enforced URIs . Enable this
setting if you are configuring many rules, such as hundreds.

For more information, see "Not-Enforced Lists".

Default: true

Type: Boolean

Hot-swap: No

Property: org.forgerock.agents.notenforced.uri.cache.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.uri.cache.enable, introduced in Java Agent 5.5.2

Not-Enforced URIs Cache Size

The maximum number of cached resource URLs that are matched by a not-enforced rule
(inverted or not inverted).

Default: 1000

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.notenforced.uri.cache.size, introduced in Java Agent 5.5.2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 139

Alias: com.sun.identity.agents.config.notenforced.uri.cache.size, introduced in Java Agent 5.5.2

Not Enforced Favicon

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When true, the agents do not enforce access to any files named favicon.ico, by inserting an
internal not-enforced rule of GET */favicon.ico.

Default: true

Type: Boolean

Hot-swap: No

Bootstrap property: Yes

Property: org.forgerock.agents.auto.not.enforce.favicon.enabled, introduced in Java Agent 5.7

Alias: org.forgerock.agents.auto.not.enforce.favicon, introduced in Java Agent 5.7

Refresh Session Idle Time

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

When set to true, the agent resets the CTS-based session idle time when granting access to a not-
enforced URI, prolonging the time before the user must authenticate again. This setting has no
effect on users with client-based (stateless) sessions.

Default: false

Property: com.sun.identity.agents.config.notenforced.refresh.session.idletime

Not-Enforced IP Processing Properties

For information about not-enforced rule evaluation and caching, see "Not-Enforced Lists".

Not-Enforced Client List

A space-delimited list of IP addresses or network CIDR notation for which no authentication is
required.

Supported values are IPV4 and IPV6 addresses, IPV4 and IPV6 ranges of addresses delimited by
the - character, and network ranges specified in CIDR notation. For example:
192.168.1.0/24 192.168.100.0/24
2001:5c0:9168:0:0:0:0:2/128
192.168.1.1-192.168.4.3
2001:5c0:9168:0:0:0:0:1-2001:5c0:9168:0:0:0:0:2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 140

If you are using a local configuration file rather than the administration console, use the following
format when specifying not-enforced client lists, where n is a unique, incrementing integer:
org.forgerock.agents.notenforced.ip.list[n]=Not enforced IP Rule

To fine-tune the not-enforced IP list, the Java agent supports inverting rules, using regular
expressions and wildcards, and specifying HTTP methods:

• Inverting Rules

Not-enforced IP rules can be inverted either by rule or by property:

• By rule. Invert any rule in the Not-Enforced Client IP List property by preceding it with the
keyword NOT, separated by a space (blank) character. In the following example, the agent will
defer to AM any request from the network specified by the 192.168.1.0/24 CIDR notation:
NOT 192.168.1.0/24

• By property. Invert all the rules in the Not-Enforced Client IP List property by setting the Not-
Enforced IP Invert List to true.

• Wildcards, Regular Expressions, and HTTP Methods

For finer control over the filtering of not-enforced IP rules, use wildcards, regular expressions,
HTTP methods, cookie values, and headers:

• Wildcards

The * wildcard matches all characters except the question mark ? character, and cannot be
escaped. For example:
192.168.*

For more information on wildcard usage, see Specifying Resource Patterns with Wildcards.

• Regular Expressions

To use regular expressions in a not-enforced IP rule, add the keyword REGEX followed by a
blank (space) character before the URI to match. For example:
REGEX 192\.168\.10\.\d+

When using regular expressions in a not-enforced IP list, consider the following points:

• The use of wildcards and regular expressions in the same rule is not supported.

• The use of netmask CIDR notation or ip address ranges and regular expressions is not
supported. However, you can create a regular expression that matches a range of IP
addresses, such as:
REGEX 192\.168\.10\.(10|\d)

../../../am/7/authorization-guide/configuring-resource-types.html#create-resource-type-xui

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 141

• If an invalid regular expression is specified in a rule, the rule is dropped and an error
message will show in the logs.

• HTTP Methods

Specify not-enforced HTTP methods by adding one of the following keywords: GET,HEAD, POST,
PUT, PATCH, DELETE, OPTIONS, and TRACE.

By default, if no HTTP method is specified for a particular rule, all methods are not-enforced
for that rule. For example, the following rule does not enforce every supported HTTP method
for the ips specified by 192.168.10.*:
192.168.10.*

To specify which methods should not be not-enforced, add a comma-delimited list of methods
followed by a blank (space) character before the URL to match. For example:
NOT,GET,REGEX 192\.168\.10\.\d+
POST 192.168.10.*
GET 192.168.10.1-192.168.10.254 192.168.0.1
POST,PUT 192.168.1.0/24

Any method that is not specified will be enforced.

Methods can be inverted by adding an exclamation point ! character in front of them. For
example, all methods but POST are enforced in the following example:
!POST 192.168.1.0/24

Unrecognized keywords in a rule are ignored and do not invalidate the rest of the rule.

• Cookie Values

To apply not-enforced rules when the incoming request has a named cookie with a specified
value, use the following syntax:
COOKIE(Name/Value/Modifiers) Not Enforced IPs

Where:

Name

The name of the cookie to inspect for the specified value.

The Agent searches for the cookie name, using a case-sensitive search. If a match is
found, the cookie is returned. If the match fails, the Agent searches again, using a case-
insensitive search. If a match is found the cookie is returned, and a warning is issued to
the logs.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 142

Value

A string to search for in the value field of the specified cookie.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive search for the cookie value. By default, the search is case-
sensitive.

r

Treat the string specified in Value as a regular expression.

For example, to allow access from 192.168.* when there is a cookie named login_result present
on the request that has a value VALID case-insensitive, specify a rule similar to the following:
COOKIE(login_result/VALID/i) 192.168.*

You can combine cookie filters with other filters, such as HTTP methods.

For example, the following rule allows GET, POST, and PUT HTTP requests from the client IP
range 192.168.*, providing that there is a cookie named internal present, and it has a value
that matches the regular expression .*ID - that is; strings that end with ID - ignoring case:
GET,POST,COOKIE(internal/.*ID/ri),PUT 192.168.*

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Header Values

You can create not-enforced rules that only apply when the incoming request has a named
header, with a specified value.

The syntax for specifying rules that apply to headers with a specified value is as follows:
HEADER(Name/Value/Modifiers) Not Enforced IPs

Where:

Name

Specifies the name of the header to inspect for the specified value.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 143

The name of the header is not case-sensitive.

Value

Specifies a string to look for in the value field of the specified header.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive string comparison.

r

Treat the string specified in Value as a regular expression.

For example, to allow access to the IP range 192.168.* when there is a header named ID
present on the request that has a value validated, ignoring case, specify a rule similar to the
following:
HEADER(ID/validated/i) 192.168.*

You can combine cookie filters with other filters, such as HTTP methods.

For example, the following rule allows GET, POST, and PUT HTTP requests from the IP address
range 192.168.*, providing that there is a header named internal present, and it has a value
that matches the regular expression .*ID - that is; strings that end with ID - ignoring case:
GET,POST,HEADER(internal/.*ID/ri),PUT 192.168.*

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Compound Not-Enforced Rules

Compound not-enforced rules allow you to combine not-enforced URI and IP rules in a single
rule. They can be configured either in the Not-Enforced URIs or the Not-Enforced Client IP List
properties.

To write not-enforced URI and IP rules, follow the guidelines explained in Not-Enforced IP
Processing Properties and Not-Enforced URI Processing Properties.

The format for compound rules requires the IP rule or list of IP rules, a delimiter, by default
the horizontal line | character, and the URI rule or list of URI rules. Blank (space) characters
around the delimiter are optional. For example:

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 144

192.168.1.1-192.168.4.3 | /images/*

In the example, the agent will not enforce any HTTP requests coming from the ip range 192.168.
1.1-192.168.4.3 to any file (*) in the /images URI.

When configuring compound rules, consider the following points:

• Keywords, such as HTTP methods, NOT, and REGEX, are required at the beginning of the
compound rule, and affect both the IP and the URI rules. For example:
GET,POST 192.168.1.1-192.168.4.3 | /images/*

In the preceding example, the agent will not enforce GET and POST HTTP requests coming from
the ip range 192.168.1.1-192.168.4.3 to any file (*) in the /images URI.
NOT,!POST 192.168.1.* | /private/*

In the preceding example, the agent will defer to AM (NOT keyword) any request done to all
supported HTTP methods but POST (!) coming from any ip address in the 192.168.1 subnet to
any file (*) in the /private URI.

• When working with the REGEX keyword, ensure both sides of the rule can be parsed as a
regular expression. For example:
POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Note that the delimiter in the previous example is &&. This is because the | character can
lead to invalid regular expressions. To configure a different delimiter, see the Not-Enforced
Compound Rules Multi-Value Separator property in Not-Enforced Processing Properties.

• When dealing with compound rules, the agent caches hits and misses for each resource
accessed. IP and URI not-enforced lists have a property each to enable or disable their
caches; for compound rules, caching is enabled if either the IP or URI not-enforced cache is
enabled. The size of its cache has the size of the larger of the two IP or URI cache sizes.

For more information about not-enforced rule evaluation and caching, see "Not-Enforced
Lists".

• Encoding Internationalized Resource Identifiers (IRIs)

To match a resource that uses non-ASCII characters, percent-encode the resource when
creating the rule.

For example, to match resources under an IRI such as http://www.example.com/forstå, specify the
following percent-encoded rule:
/forst%C3%A5/*

Default: Empty

Type: List of IP addresses

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 145

Hot-swap: Yes

Property: org.forgerock.agents.notenforced.ip.list, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.ip, introduced in Java Agent 5.5.2

Invert Not Enforced IPs

When true, enforce policy for the IPs specified in Not-Enforced Client List property instead of
allowing access to them without authentication.

Caution

For security considerations, do not enable this property. Instead, ForgeRock recommends using the NOT
keyword to invert specific rules in the Not-Enforced Client IP List.

Default: false

Type: Boolean

Hot-swap: No

Property: org.forgerock.agents.notenforced.ip.invert.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.ip.invert, introduced in Java Agent 5.5.2

Not-Enforced IP Cache Enabled

When true, the agent caches evaluation (hits and misses) of the not-enforced IP list. Enable this
setting if you are configuring many rules, such as hundreds.

For more information, see "Not-Enforced Lists".

Default: true

Type: Boolean

Hot-swap: No

Property: org.forgerock.agents.notenforced.ip.cache.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.ip.cache.enable, introduced in Java Agent 5.5.2

Not-Enforced IP Cache Size

The maximum number of cached IP addresses that are matched by a not-enforced rule (inverted
or not inverted).

Default: 1000

Type: Integer

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 146

Hot-swap: No

Property: org.forgerock.agents.notenforced.ip.cache.size, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.notenforced.ip.cache.size, introduced in Java Agent 5.5.2

Profile Attributes

Profile Attribute Fetch Mode

• NONE: Profile attributes are not gathered

• HTTP_HEADER: Profile attributes are taken from the HTTP headers

• REQUEST_ATTRIBUTE: Profile attributes are taken from the request attributes

• HTTP_COOKIE: Profile attributes are taken from HTTP cookies

Default: NONE

Type: Constrained string

Hot-swap: Yes

Property: org.forgerock.agents.response.profile.fetch.mode, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.profile.attribute.fetch.mode, introduced in Java Agent 5.5.2

Profile Attribute Mapping

Maps the profile attributes to HTTP headers for the currently authenticated user. Map Keys are
attribute names, and Map Values are HTTP header names. The user profile can be stored in LDAP
or any other arbitrary data store.

To populate the value of profile attribute CN under CUSTOM-Common-Name: enter CN in the Map Key
field, and enter CUSTOM-Common-Name in the Corresponding Map Value field. This corresponds to org.
forgerock.agents.profile.attribute.map[cn]=CUSTOM-Common-Name.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, common-name becomes HTTP_COMMON_NAME.

Default: Empty

Type: Map, with format profile attribute:HTTP header

Hot-swap: Yes

Property: org.forgerock.agents.profile.attribute.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.profile.attribute.mapping, introduced in Java Agent 5.5.2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 147

Response Attributes

Response Attribute Fetch Mode

• NONE: Response attributes are not gathered

• HTTP_HEADER: Response attributes are taken from the HTTP headers

• REQUEST_ATTRIBUTE: Response attributes are taken from the request attributes

• HTTP_COOKIE: Response attributes are taken from HTTP cookies

Default: NONE

Type: Constrained string

Hot-swap: Yes

Property: org.forgerock.agents.response.attribute.fetch.mode, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.response.attribute.fetch.mode, introduced in Java Agent 5.5.2

Response Attribute Mapping

Maps the policy response attributes to HTTP headers for the currently authenticated user. The
response attribute is the attribute in the policy response to be fetched.

To populate the value of response attribute uid under CUSTOM-User-Name: enter uid in the Map Key
field, and enter CUSTOM-User-Name in the Corresponding Map Value field. This corresponds to org.
forgerock.agents.response.attribute.map[uid]=Custom-User-Name.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, response-attr-one becomes HTTP_RESPONSE_ATTR_ONE.

Default: Empty

Type: Map, with format response attribute:HTTP header

Hot-swap: Yes

Property: org.forgerock.agents.response.attribute.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.response.attribute.mapping, introduced in Java Agent 5.5.2

Common Attributes Fetching Processing Properties

Cookie Separator Character

The separator for multiple values of the same attribute when it is set as a cookie.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 148

Default: |

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.attribute.cookie.separator, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.attribute.cookie.separator, introduced in Java Agent 5.5.2

Fetch Attribute Date Format

The java.text.SimpleDateFormat of date attribute values used when an attribute is set in an HTTP
header.

Default: EEE, d MMM yyyy hh:mm:ss z

Type: String (java.text.SimpleDateFormat)

Hot-swap: Yes

Property: org.forgerock.agents.attribute.date.format, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.attribute.date.format, introduced in Java Agent 5.5.2

Attribute Cookie Encode

When true, attribute values are URL-encoded before being set as a cookie.

Default: true

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.attribute.cookie.encode.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.attribute.cookie.encode, introduced in Java Agent 5.5.2

Session Attributes

Session Attribute Fetch Mode

• NONE: Session attributes are not gathered

• HTTP_HEADER: Session attributes are taken from the HTTP headers

• REQUEST_ATTRIBUTE: Session attributes are taken from the request attributes

• HTTP_COOKIE: Session attributes are taken from HTTP cookies

Default: NONE

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 149

Type: Constrained string

Hot-swap: Yes

Property: org.forgerock.agents.session.attribute.fetch.mode, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.session.attribute.fetch.mode, introduced in Java Agent 5.5.2

Session Attribute Mapping

Maps session attributes to HTTP headers for the currently authenticated user. The session
attribute is the attribute in the session to be fetched.

To populate the value of session attribute UserToken under CUSTOM-userid: enter UserToken in the Map
Key field, and enter CUSTOM-userid in the Corresponding Map Value field. This corresponds to org.
forgerock.agents.session.attribute.map[UserToken]=CUSTOM-userid.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, success-url becomes HTTP_SUCCESS_URL.

Default: Empty

Type: Map, with format session attribute:HTTP header

Hot-swap: Yes

Property: org.forgerock.agents.session.attribute.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.session.attribute.mapping, introduced in Java Agent 5.5.2

Privilege Attributes Processing Properties

 The following properties do not apply to Java Agents 5.7, although they may appear in the AM
console:

Default Privileged Attribute

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.default.privileged.attribute

Privileged Attribute Type

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.privileged.attribute.type

Privileged Attributes To Lower Case

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 150

Property: com.sun.identity.agents.config.privileged.attribute.tolowercase

Privileged Session Attribute

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.privileged.session.attribute

Enable Privileged Attribute Mapping

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.privileged.attribute.mapping.enable

Privileged Attribute Mapping

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.privileged.attribute.mapping

Custom Authentication Processing Properties

 The following properties do not apply to Java Agents 5.7, although they may appear in the AM
console:

Custom Authentication Handler

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.auth.handler

Custom Logout Handler

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.handler

Custom Verification Handler

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.verification.handler

Continuous Security Properties

For information about continuous security, see "Continuous Security".

Continuous Security Cookies

Maps cookie values available in inbound resource requests to entries in the environmental
conditions map, which Java agents send to AM during policy evaluation.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 151

This property has the format [cookie_name]=map_entry_name, where:

• cookie_name specifies the name of the cookie in the inbound request.

The Agent searches for the cookie name, using a case-sensitive search. If a match is found, the
cookie is returned. If the match fails, the Agent searches again, using a case-insensitive search.
If a match is found the cookie is returned, and a warning is issued to the logs.

• map_entry_name specifies the name of the entry within the environmental conditions map that
contains the value of cookie_name.

Example:
org.forgerock.agents.continuous.security.cookies.map[trackingcookie1]=myCookieEntry

Java agents add entries from both of the continuous security properties into the environmental
conditions map, which AM's authorization framework accesses during policy evaluation.

Use server-side authorization scripts to:

• Access the map's contents

• Write scripted conditions based on cookies and headers in the request

For more information about server-side authorization scripts in AM, see the ForgeRock Access
Management Authorization Guide.

When you specify continuous security properties, Java agents generate environmental condition
entries in the map as follows:

Key Value
requestIp a Contains the inbound request's IP address. The Java agent determines the IP as

follows:

• If the com.sun.identity.agents.config.client.ip.header property is
configured, the agent extracts the IP address from the header.

• If the com.sun.identity.agents.config.client.ip.header property is not
configured, the agent uses the HttpServletRequest.getRemoteAddr Java
function to determine the IP address.

requestDNSName b Contains the inbound request's host name. The Java agent determines the host
name as follows:

• If the com.sun.identity.agents.config.client.hostname.header property is
configured, the agent extracts the host name from the header.

• If the com.sun.identity.agents.config.client.hostname.header property is
not configured, the agent uses the HttpServletRequest.getRemoteHost Java
function to determine the host name.

variable_name c Contains an array of cookie or header values.
aThe requestIp entry is created in the map regardless of how the continuous security properties are configured.

../../../am/7/authorization-guide/scripted-policy-condition.html
../../../am/7/authorization-guide/scripted-policy-condition.html

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 152

bThe requestDNSName entry is created in the map regardless of how the continuous security properties are configured.
c There may be as many variable_name entries as values specified in the continuous security properties.

Consider the following example:

org.forgerock.agents.continuous.security.cookies.map[ssid]=mySsid
org.forgerock.agents.continuous.security.headers.map[User-Agent]=myUser-Agent

Assuming the incoming request contains an ssid cookie and an User-Agent header, the
environmental conditions map would contain the following variables:

• requestIp, containing the IP address of the client. For example, 192.16.8.0.1.

• requestDNSName, containing the host name of the client. For example, client.example.com.

• mySsid, containing the value of the ssid cookie. For example, 77xe99f4zqi1l99z.

• myUser-Agent, containing the value of the from header. For example, Mozilla/5.0 (Windows NT 6.3;
 Trident/7.0; rv:11.0) like Gecko.

Default: Empty

Type: Map

Hot-swap: Yes

Property: org.forgerock.agents.continuous.security.cookies.map[cookie_name]=map_entry_name, introduced
in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.continuous.security.cookies, introduced in Java Agent 5.5.2

Continuous Security Headers

Maps header values in inbound resource requests to entries in the environmental conditions map,
which Java agents send to AM during policy evaluation.

This property has the format [header_name]=map_entry_name, where:

• header_name specifies the name of the header in the inbound request.

• map_entry_name specifies the name of the entry within the environmental conditions map that
contains the value of header_name.

Example:
org.forgerock.agents.continuous.security.headers.map[User-Agent]=myUserAgentHeaderEntry

Java agents add entries from both of the continuous security properties into the environmental
conditions map, which AM's authorization framework accesses during policy evaluation.

Use server-side authorization scripts to:

• Access the map's contents

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 153

• Write scripted conditions based on cookies and headers in the request

For more information about server-side authorization scripts in AM, see the ForgeRock Access
Management Authorization Guide.

When you specify continuous security properties, Java agents generate environmental condition
entries in the map as follows:

Key Value
requestIp a Contains the inbound request's IP address. The Java agent determines the IP as

follows:

• If the com.sun.identity.agents.config.client.ip.header property is
configured, the agent extracts the IP address from the header.

• If the com.sun.identity.agents.config.client.ip.header property is not
configured, the agent uses the HttpServletRequest.getRemoteAddr Java
function to determine the IP address.

requestDNSName b Contains the inbound request's host name. The Java agent determines the host
name as follows:

• If the com.sun.identity.agents.config.client.hostname.header property is
configured, the agent extracts the host name from the header.

• If the com.sun.identity.agents.config.client.hostname.header property is
not configured, the agent uses the HttpServletRequest.getRemoteHost Java
function to determine the host name.

variable_name c Contains an array of cookie or header values.
aThe requestIp entry is created in the map regardless of how the continuous security properties are configured.
bThe requestDNSName entry is created in the map regardless of how the continuous security properties are configured.
c There may be as many variable_name entries as values specified in the continuous security properties.

Consider the following example:

org.forgerock.agents.continuous.security.cookies.map[ssid]=mySsid
org.forgerock.agents.continuous.security.headers.map[User-Agent]=myUser-Agent

Assuming the incoming request contains an ssid cookie and an User-Agent header, the
environmental conditions map would contain the following variables:

• requestIp, containing the IP address of the client. For example, 192.16.8.0.1.

• requestDNSName, containing the host name of the client. For example, client.example.com.

• mySsid, containing the value of the ssid cookie. For example, 77xe99f4zqi1l99z.

• myUser-Agent, containing the value of the from header. For example, Mozilla/5.0 (Windows NT 6.3;
 Trident/7.0; rv:11.0) like Gecko.

Default: Empty

../../../am/7/authorization-guide/scripted-policy-condition.html
../../../am/7/authorization-guide/scripted-policy-condition.html

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 154

Type: Map

Hot-swap: Yes

Property: org.forgerock.agents.continuous.security.headers.map[header_name]=map_entry_name, introduced
in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.continuous.security.headers, introduced in Java Agent 5.5.2

Query Parameter Handling Properties

For information about how the Java agent handles query parameters, see "Query Parameter
Handling".

Remove Query Parameters

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies a list of query parameters to be removed from a URL for policy decision and caching
purposes. The property has the format [Domain/path] | parameter[,parameter...] with no spaces
between values. Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 155

• parameter[,parameter...]

Specifies a comma-separated list of query parameters to remove from the incoming request
URL.

Consider the following constraints when constructing the list of parameters:

• Add a comma (,) character at the beginning or the end of the list to remove all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Add the asterisk (*) character to the list to remove all parameters, including unnamed ones.

The remaining parameters (those that do not match the list of parameters) are sorted
alphabetically.

Examples:
org.forgerock.agents.unwanted.http.url.param.list[0]=myapp.example.com/customers|location,lang
 org.forgerock.agents.unwanted.http.url.param.list[1]=example.com/customers|*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
lang, will be cached by the agent as http://myapp.example.com/customers?area=1343456&country=uk, where
both lang and the unnamed parameter are removed and the rest of the parameters are sorted
alphabetically.

Default: Empty

Type: List of HTTP query parameter names

Hot-swap: Yes

Property: org.forgerock.agents.unwanted.http.url.param.list[n], introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.unwanted.http.url.params, introduced in Java
Agent 5.5.2

Regular Expression Remove Query Parameters

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies a list of regular expressions the agent uses to match query parameters to be removed
from a URL for policy decision and caching purposes. The property has the format [Domain/path]
 | regular_expression[,regular_expression...] with no spaces between values. Specify values as
follows:

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 156

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• regular_expression[,regular_expression...]

Specifies a comma-separated list of regular expressions the agent uses to match query
parameters to be removed from the incoming request URL.

Consider the following constraints when constructing your list of regular expressions:

• Add a comma (,) character at the beginning or the end of the list to remove all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Consider creating multiple simple regular expressions instead of a single complicated one.

The remaining parameters (those that do not match the list of parameters) are sorted
alphabetically.

Examples:
org.forgerock.agents.unwanted.http.url.params.list.regexp[0]=myapp.example.com|b.*,gp(a|p|s),
org.forgerock.agents.unwanted.http.url.params.list.regexp[1]=|.*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
coun.*?, will be cached by the agent as http://myapp.example.com/customers?=bristol&lang=en_GB, where
both country and unnamed parameter are removed and the remaining parameters are sorted
alphabetically.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 157

Default: Empty

Type: List of HTTP query parameter names

Hot-swap: Yes

Property: org.forgerock.agents.unwanted.http.url.params.regex.list[n], introduced in Java Agent 5.5.2

Alias: org.forgerock.agents.unwanted.http.url.params.regexp.list, introduced in Java Agent 5.5.2, and
org.forgerock.openam.agents.config.conditional.unwanted.http.url.params.regexp, introduced in Java
Agent 5.5.2

Retain Query Parameters

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies a list of query parameters to be retained for policy decision and caching purposes. The
property has the format [Domain/path] | parameter[,parameter...] with no spaces between values.
Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• parameter[,parameter...]

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 158

Specifies a comma-separated list of query parameters to retain from the incoming request URL.

Consider the following constraints when constructing the list of parameters:

• Add a comma (,) character at the beginning or the end of the list to retain all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Add the asterisk (*) character to the list to retain all parameters, including unnamed ones.

The remaining parameters (those that match the list of parameters) are sorted alphabetically.

Examples:
org.forgerock.agents.wanted.http.url.param.list[0]=myapp.example.com/news|area
org.forgerock.agents.wanted.http.url.param.list[1]=example.com/news|area,country,location,

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
lang, will be cached by the agent as http://myapp.example.com/customers?=bristol&lang=en_GB, where
both lang and the unnamed parameter are retained and sorted alphabetically.

Default: Empty

Type: List of HTTP query parameter names

Hot-swap: Yes

Property: org.forgerock.agents.wanted.http.url.param.list[n], introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.wanted.http.url.params, introduced in Java Agent
5.5.2

Regular Expression Retain Query Parameters

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies a list of regular expressions the agent uses to match query parameters to be retained
for policy decision and caching purposes. The property has the format [Domain/path] | regular_
expression[,regular_expression...] with no spaces between values. Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 159

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• regular_expression[,regular_expression...]

Specifies a comma-separated list of regular expressions the agent uses to match query
parameters to be retained from the incoming request URL.

Consider the following constraints when constructing your list of regular expressions:

• Add a comma (,) character at the beginning or the end of the list to retain all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Consider creating multiple simple regular expressions instead of a single complicated one.

The remaining parameters (those that match the list of parameters) are sorted alphabetically.

Examples:
org.forgerock.agents.wanted.http.url.params.list.regexp[0]=example.com/market|regist.*
 org.forgerock.agents.wanted.http.url.params.list.regexp[1]=myapp.example.com/register|,.*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
coun.*?, will be cached by the agent as http://myapp.example.com/customers?=bristol,country=uk, where
both country and the unnamed parameter are retained and sorted alphabetically.

Default: Empty

Type: List of HTTP query parameter names

Hot-swap: Yes

Property: org.forgerock.agents.wanted.http.url.params.list.regexp[n], introduced in Java Agent 5.5.2

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 160

Alias: org.forgerock.agents.wanted.http.url.params.regexp.list, introduced in Java Agent 5.5.2, and
org.forgerock.openam.agents.config.conditional.wanted.http.url.params.regexp, introduced in Java Agent
5.5.2

Authentication Failure Properties

Authentication Fail Reason Url

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The URL or URI to which the agent redirects the user after a failed authentication. For example,
app/AuthFailed.html.

Note that authentication failure can happen for reasons other than wrong credentials. For more
information, see "Authentication Failure Notification".

If this property is not set, the agent redirects the user to the URL defined in the Goto URL
property. If both are unset, the agent returns an HTTP 400 message.

To configure the agent to send the reason for authentication failure in a query parameter,
configure Login Reason Parameter Name.

Default: Empty

Type: URI/URL string

Property: org.forgerock.agents.authn.fail.url, introduced in Java Agent 5.7

Authentication Fail Reason Parameter Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Specifies a query parameter name to contains the reason why authentication failed. The agent
appends this parameter to the URL or URI defined by Authentication Fail Reason Url .

For example, if the value of property is reason, the agent redirects the end user to a URL similar to
the following:
http://myapp.example.com:8080/app/AuthFailed.html?reason=AUTHN_BOOKKEEPING_COOKIE_MISSING

If not set, the agent does not append the reason for the authentication failure, when redirecting
to the URL or URI. This property requires Authentication Fail Reason Url to be set.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 161

Caution

For increased security, remap the reason for authentication failure, using Authentication Fail Reason
Parameter Value Map.

Default: Empty

Type: String

Property: org.forgerock.agents.authn.fail.reason.parameter.name, introduced in Java Agent 5.7

Authentication Fail Reason Parameter Value Map

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Caution

After an authentication failure, malicious users can use the information you expose to gain access to the
system. Map the reason for authentication failure to something generic, or something that is meaningful
inside your organization.

Map reasons for authentication failure to custom messages, as follows:

Authentication Failure Reasons

Reason Code Meaning
AUTHN_BOOKKEEPING_COOKIE_MISSING The agent cannot find the authentication tracking cookie (defined in

the org.forgerock.agents.authn.cookie.name property).

This error can happen if the user successfully authenticates, but clicks
the back button of the browser to return to the previous page.

NONCE_MISSING The agent found the authentication tracking cookie, but it cannot find
the unique identifier of the authentication request inside the cookie.

This error can happen if the user successfully authenticates, but clicks
the back button of the browser to return to the previous page.

BAD_AUDIENCE The audience in the JWT did not correspond to the audience in the
cookie entry.

This error can happen if all agents working in a cluster do not have
the same Agent Profile Name.

NO_TOKEN The agent cannot find the session ID token.
TOKEN_EXPIRED The agent found the session ID token, but it is past its expiry date.

Reference
Configuring Application Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 162

Reason Code Meaning
AM_SAYS_INVALID The agent found the session ID token, the expiry time is correct, but

AM returns that the ID token is invalid.
JWT_INVALID The agent found the session ID token, but cannot parse it.
EXCEPTION This reason can have the following meanings:

• The agent found the session ID token, but threw an exception while
parsing it.

• The agent cannot connect to AM to validate the ID token, maybe due
to a network outage.

Specify the authentication failure reason from the preceding table as the map key, and your
custom error identifier string as the value. For example:
org.forgerock.agents.authn.fail.reason.remapper[TOKEN_EXPIRED]=MY_ERROR_MESSAGE

Consider remapping all the failure reasons to a new error message, for example, ERROR, then be
specific on those that hold more meaning for your environment. For example:
org.forgerock.agents.authn.fail.reason.remapper=ERROR
org.forgerock.agents.authn.fail.reason.remapper[AUTHN_BOOKKEEPING_COOKIE_MISSING]=BACK_BUTTON_PRESSED
org.forgerock.agents.authn.fail.reason.remapper[NONCE_MISSING]=BACK_BUTTON_PRESSED

To map all the authentication failure reasons to the same message, you do not need to specify a
key in the property.

This property requires Authentication Fail Reason Url to be set.

Default: Empty

Type: Map, keyed by reason for failure

Property: org.forgerock.agents.authn.fail.reason.remapper[REASON], introduced in Java Agent 5.7

Goto Url

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The URL to which the agent redirects the user when required redirection properties are not set in
the agent configuration.

For example, after an authentication failure, if the property Authentication Fail Reason Url is not
set, the agent redirects the user to the URL defined in this property. If both are unset, the agent
returns an HTTP 400.

Default: Empty

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 163

Type: String, or an URL or URI of an HTML or other page

Hot-swap: Yes

Property: org.forgerock.agents.default.goto.url, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.openam.agent.default_goto_url, introduced before Java Agent
5.5.2

Configuring SSO Properties

This section covers SSO Java agent properties. After creating the agent profile, you access these
properties in the AM console under Realms > Realm Name > Applications > Agents > Java > Agent
Name > SSO.

This section describes the following property groups:

• Cookie Properties

• Caching Properties

• Cross-Domain SSO Properties

• Cookie Reset Properties

Cookie Properties

Cookie Name

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.iplanet.am.cookie.name

Http Only

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When true, cookies are flagged as HTTPOnly. Use this property prevent scripts and third-party
programs from accessing the cookies.

Default: true

Type: Boolean

Hot-swap: Yes

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 164

Property: com.sun.identity.cookie.httponly, introduced in Java Agent 5.5.2

Encode Cookies

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When true, cookies are encoded.

Default: false

Type: Boolean

Hot-swap: Yes

Property: com.iplanet.am.cookie.encode, introduced in Java Agent 5.5.2

Pre-Authenticated Cookie Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The name of the bookkeeping "pre-authentication" cookie the agent uses for unauthenticated
requests, to check that the authentication URL (used to invoke AM for authentication) isn't being
used in a replay attack.

• (Default) One cookie is used for all unauthenticated requests.

Dozens or even hundreds of requests can be bundled into the same cookie, and if the number of
concurrent requests is large enough, the cookie can exceed the browser size limit and requests
can fail.

As a workaround, add as many resources as possible to the not-enforced lists, because these
are not tracked in the cookie.

• (From version 5.7) One cookie is used for each unauthenticated request The cookie name
contains the secure ID in a user-defined manner.

Place the %n string once in the name of the cookie. For example:
org.forgerock.agents.authn.cookie.name=pre-authn-%n
org.forgerock.agents.authn.cookie.name=pre-%n-authn
org.forgerock.agents.authn.cookie.name=%n-pre-authn
org.forgerock.agents.authn.cookie.name=%n

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 165

Alternatively, set the cookie name to %n. The agent translates the string to a unique identifier
when it creates the cookie.

Caution

Use this mode only if required; creating additional cookies can impact performance.

The following information is stored in the cookie:

• URL of the original request

• HTTP mode

• Secure ID (subsequently baked into the nonce of the returned JWT)

• Audience

• Relevant ACR information

• Transaction ID

• Authentication bookkeeping cookie expiry time

The cookie is compressed and finally signed.

Default: amFilterCDSSORequest

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.authn.cookie.name, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cdsso.cookie.name, introduced in Java Agent 5.5.2

Pre-Authenticated Cookie Max Age

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The maximum age in seconds of the authentication bookkeeping cookie.

Default: 300

Type: Integer

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 166

Hot-swap: Yes

Property: org.forgerock.agents.authn.cookie.max.age.seconds, introduced in Java Agent 5.6.3

Caching Properties

SSO Cache Enable

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.amsso.cache.enable

Cross-Domain SSO Properties

Cross-Domain SSO

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

CDSSO is always enabled.

Property: com.sun.identity.agents.config.cdsso.enable

CDSSO Redirect URI

Specifies a URI the Java agent uses to process CDSSO requests.

Caution

Changing the value of this property while the Agent is running prevents it from functioning if OIDC
authentication is being used. The Agent must be restarted as soon as the value in AM has been altered and
the properties saved.

Default: None. The value of this property must be provided by AM.

Type: URI

Hot-swap: No

Property: org.forgerock.agents.authn.redirect.uri, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cdsso.redirect.uri, introduced in Java Agent 5.5.2

CDSSO Servlet URL

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.cdcservlet.url

CDSSO Clock Skew

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 167

Property: com.sun.identity.agents.config.cdsso.clock.skew

CDSSO Trusted ID Provider

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.trusted.id.provider

Secure Cookies Enable

When true, all cookies written by the agent are secure. For backward compatibility, the default is
false.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.secure.cookies.enabled, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.cookie.secure, introduced in Java Agent 5.5.2, and com.sun.identity.agents.
config.cdsso.secure.enable, introduced in Java Agent 5.5.2

Cookie Reset Properties

Cookie Reset

When true, Java agents reset cookies in the response before redirecting to authentication.

This property is linked to the properties Profile Attribute Fetch Mode and Session Attribute Fetch
Mode. When either of these is set to HTTP_COOKIE, the Agent builds a list of cookies.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.cookie.reset.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cookie.reset.enable, introduced in Java Agent 5.5.2

Cookie Reset Name List

List of cookies to reset if Cookie Reset is true.

The Agent searches for the cookie name, using a case-sensitive search. If a match is found, the
cookie is returned. If the match fails, the Agent searches again, using a case-insensitive search. If
a match is found the cookie is returned, and a warning is issued to the logs.

Default: Empty

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 168

Type: List of cookie names

Hot-swap: Yes

Property: org.forgerock.agents.cookie.reset.name.list, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cookie.reset.name, introduced in Java Agent 5.5.2

Cookie Reset Domain Map

Specifies how names from Cookie Reset Name List correspond to cookie domain values when the
cookie is reset.

Default: Empty

Type: Map, with format cookie name:cookie domain

Hot-swap: Yes

Property: org.forgerock.agents.cookie.reset.domain.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cookie.reset.domain, introduced in Java Agent 5.5.2

Cookie Reset Path Map

Specifies how names from Cookie Reset Name List correspond to cookie paths when the cookie is
reset.

Default: Empty

Type: Map, with format cookie name:cookie path

Hot-swap: Yes

Property: org.forgerock.agents.cookie.reset.path.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.cookie.reset.path, introduced in Java Agent 5.5.2

Set-Cookie Internal Map

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When creating internal cookies, such as am-auth-jwt and the bookkeeping "pre-authentication"
cookies, set additional attributes by adding text into the Set-Cookie header.

Specify a key:value map, where the key is the cookie name, and the value the string to add to the
Set-Cookie header. If the key is omitted, the value becomes the default for all cookies.

Reference
Configuring SSO Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 169

If the string is not suitable for the Set-Cookie header, the Agent might fail to create the cookie.

Separate multiple values with a semicolon.

The following property setting sets the SameSite attribute of the am-auth-jwt cookie:
org.forgerock.agents.set.cookie.internal.map[am-auth-jwt]=samesite=strict

The following example sets the SameSite attribute of all cookies:
org.forgerock.agents.set.cookie.internal.map=samesite=strict

The following example sets several attributes of mycookie:
org.forgerock.agents.set.cookie.internal.map[myCookie]=Max-Age=10000; Domain=.my.default.fqdn

Default: Empty

Type: Map, with format cookie name: string ; ...

Hot-swap: Yes

Property: org.forgerock.agents.set.cookie.internal.map, introduced in Java Agent 5.6.3

Set-Cookie Attribute Map

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When creating cookies with the AttributeTaskHandler, out of Profile Attributes, Response
Attributes, and Session Attributes, set additional attributes by adding text into the Set-Cookie
header.

Specify a key:value map, where the key is the cookie name, and the value the string to add to the
the Set-Cookie header.

If the string is not suitable for the Set-Cookie header, the Agent might fail to create the cookie.

Separate multiple values with a semicolon.

The following example sets the SameSite attribute of the myCookie cookie:
org.forgerock.agents.set.cookie.attribute.map[myCookie]=samesite=strict

The following example sets several attributes of myCookie:
org.forgerock.agents.set.cookie.attribute.map[myCookie]=Max-Age=10000; Domain=.my.default.fqdn

Default: Empty

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 170

Type: Map, with format cookie name: string ; ...

Hot-swap: Yes

Property: org.forgerock.agents.set.cookie.attribute.map, introduced in Java Agent 5.6.3

Samesite Cookie Attributes Excluded User Agents Pattern List

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

List of user agents excluded from receiving SameSite cookie attributes.

The following example gives the default list of user agents excluded from receiving SameSite
cookie attributes:
org.forgerock.agents.samesite.excluded.user.agents.list[0]=(?!Chrom(e|ium))Version/(1[0-2]|[1-9])(\\.
d+)* .*Safari/
 org.forgerock.agents.samesite.excluded.user.agents.list[1]=(iP.+; CPU .OS (1[0-2]|[1-9])_[_\d].*)
 AppleWebKit/
 org.forgerock.agents.samesite.excluded.user.agents.list[2]=^Mozilla/[\.\d]+ (Macintosh;.Mac OS X
 10_14[_\d]) AppleWebKit/[\.\d](KHTML, like Gecko)$
 org.forgerock.agents.samesite.excluded.user.agents.list[3]=Chrom(e|ium)[^ /]/(5[1-9]|6[0-6])\.[\.\d]
 org.forgerock.agents.samesite.excluded.user.agents.list[4]=UCBrowser/(12\.13\.[01][^\d]|12\.1[0-2]\.|
12\.[0-9]\.|1[01]\.|[0-9]\.)[\.\d]*

To specify different user agent patterns, add them in AM as custom properties, as described
in Custom Properties. When user agent patterns are specified, the default list of user agents is
ignored.

When the following example is specified in AM as a custom property, Chrome versions 67-89 are
excluded from receiving SameSite cookie attributes. However, the Chrome versions in the default
list of user agents are no longer excluded:
org.forgerock.agents.samesite.excluded.user.agents.list[0]=Chrom(e|ium)[^ /]/(6[7-9]|8[0-9])\.[\.\d]

Type: List of expressions representing user agents

Hot-swap: Yes

Property: org.forgerock.agents.samesite.excluded.user.agents.list, introduced in Java Agent 5.6.3

Configuring AM Services Properties

This section covers AM services' Java agent properties. After creating the agent profile, you access
these properties in the AM console under Realms > Realm Name > Applications > Agents > Java >
Agent Name > AM Services.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 171

This section describes the following property groups:

• Login URL Properties

• Logout URL Properties

• Authentication Service Properties

• Policy Client Service Properties

• User Data Cache Service Properties

• Session Client Service Properties

Login URL Properties

For information, see "Redirection and Conditional Redirection".

Allow Custom Login Mode

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Sets the login redirection mode, as follows:

• true: Allow the custom login redirection mode (Non-OIDC compliant login flow). Use with the
following properties:

• OpenAM Login URL (com.sun.identity.agents.config.login.url)

• org.forgerock.agents.legacy.login.url.list, see Custom Conditional Login URL.

• false: Use the default login redirection mode (OIDC compliant login flow). Use with the
following properties:

• OAuth 2.0 Login List

Before configuring this property, read "Redirection and Conditional Redirection".

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.legacy.login.enabled, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.allow.custom.login, introduced in Java Agent 5.5.2

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 172

Custom Conditional Login URL

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Allows additional parameters to be conditionally added to legacy login URLs.

Default: Empty

Type: List of strings, with format domain/path|url?param1=value1¶m2=value2

Hot-swap: Yes

Property: org.forgerock.agents.legacy.login.url.list, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.custom.login.url, introduced in Java Agent 5.5.2

Conditional Legacy Logout URL List

Allows additional parameters to be conditionally added to legacy logout URLs.

Default: Empty

Type: List of strings, with format domain/path|url?param1=value1¶m2=value2

Hot-swap: Yes

Property: org.forgerock.agents.conditional.logout.url.list, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.logout.url, introduced in Java Agent 5.5.2

OpenAM Login URL

When configured, specifies the URL of a custom login page to which the agent redirects incoming
users without sufficient credentials so that they can authenticate.

Important

You must add the custom login page to either the not-enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

The login URL has the format URL[?realm=realm_name?parameter1=value1&...], where:

• URL is the custom login page to where the agent redirects the unauthenticated user.

• [?realm=realm_name¶meter1=value1&...] specifies optional parameters that the agent will pass to
the custom login page, for example, the AM realm where the user should log to.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 173

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

• The users should always log in to the Top Level Realm.

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

You can specify as many parameters your custom login pages require.

Example:
https://login.example.com/login.jsp?realm=marketplace¶m1=value1

In some versions of AM you may be able to configure more than one value for this property, but
only the first value is honored.

Important

When the agent redirects the user to the custom login page, it appends a goto parameter (as configured in
the Goto Parameter Name property) with the agent's CDSSO endpoint and a nonce parameter.

The following is an example of a redirection from the agent to a custom login page:
http://login.example.com/login.jsp?realm=marketplace¶m1=value1&goto=http
%3A%2F%2Fagent.example.com%3A8020%2Flogin%2Fendpoint%3Fnonce
%3Df2fc384a07b7668e05fc6c26c01edf1bac8a3b55%26realm%3Dmarketplace

Note that the goto parameter is URL encoded. If the realm parameter is configured in the redirection rule,
it is also appended to the goto parameter.

Once the user has logged in, the custom login page must redirect back to the agent. To avoid redirection
loops and login failures, consider the following constraints:

• You must ensure that the custom login page redirects back to the agent using the URL contained in the
goto parameter, and that the request contains the nonce parameter.

• You must set the realm parameter in the redirection request to the agent if the users should not log in to
AM's Top Level Realm.

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 174

The following is an example of a redirection from a custom login page to the agent:

http://agent.example.com:8020/login/endpoint?
nonce=f2fc384a07b7668e05fc6c26c01edf1bac8a3b55&realm=marketplace

There is one exception; if the realm where the agent should log the user in to has DNS alias configured,
AM will log in the user to the realm whose DNS alias matches the incoming request URL. For example,
an inbound request from the http://marketplace.example.com URL will be logged in to the marketplace
realm if the realm alias is set to marketplace.example.com, whether there is a realm parameter or not.

Default: Empty

Type: List, of which only the first element is ever used

Hot-swap: Yes

Property: com.sun.identity.agents.config.login.url, introduced in Java Agent 5.5.2

OpenAM Conditional Login URL

Conditionally redirect users based on the incoming request URL. If the incoming request URL
matches a specified domain name, the Java agent redirects the request to an specific URL. That
specific URL can be an AM instance, site, or a different website.

Important

When redirecting incoming login requests to a custom login page, you must add it to either the not-
enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the
FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Domain/path]|[URL][?realm=value&module=value2&service=value3],
with no spaces between values. Specify values in conditional redirects as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 175

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• URL

Specifies the URL to which redirect incoming login requests. The URL may be an AM instance,
an AM site, or a website other than AM.

When redirecting to AM, specify the URL of an AM instance or site in the format
protocol://FQDN[:port]/URI/oauth2/authorize, where the port is optional if it is 80 or 443. For
example, https://openam.example.com/openam/oauth2/authorize.

When redirecting to a website other than AM, specify a URL in the format
protocol://FQDN[:port]/URI, where the port is optional if it is 80 or 443. For example, https://
myweb.example.com/authApp.

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Specifies the AM realm into which the agent logs users. For example, ?realm=marketplace.

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 176

• The users should always log in to the Top Level Realm.

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

• &module=value2&service=value3¶m1=value1...

Specifies parameters that can be added to the URL, such as:

• module, which specifies the authentication module the user authenticates against. For
example, ?module=myAuthModule.

• service, which specifies an authentication chain or tree the user authenticates against. For
example, ?service=myAuthChain.

• Any other parameters your custom login pages require.

Chain parameters with an & character, for example, realm=value&service=value.

Important

Java agent requests contain a number of parameters required by AM's oauth2/authorize endpoint. You
must ensure that the custom login page redirects back to the agent using the URL contained in the goto
parameter, and that the request contains the following parameters:

• response_type=id_token

• scope=openid

• response_mode=form_post

• nonce=one_off_code

• client_id=agent_profile_name

• agent_realm=agent_realm_name

• redirect_uri=agent_CDSSO_endpoint

The following is an example of the call that should reach AM:

https://openam.example.com:443/openam/oauth2/authorize
?scope=openid
&response_type=id_token
&agent_realm=%2F
&redirect_uri=http%3A%2F%2Fopenam.example.com%3A9080%2Ffrqa%2FsunwCDSSORedirectURI
&nonce=sf2fc384a07b7668e05fc6c26c01edf1bac8a3b55
&client_id=myJEEAgent
&response_mode=form_post

Failure to maintain these parameters when redirecting to AM may cause unexpected problems, such as
redirect loops.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 177

You must also set the realm parameter in the redirection request made to the agent if users should not log
in to AM's Top Level Realm.

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to, and then pass the realm parameter to the redirection to the agent.

There is one exception; if the realm where the agent should log in the user has DNS alias configured, AM
will log in the user to the realm whose DNS alias matches the incoming request URL. For example, an
inbound request from the http://marketplace.example.com URL will be logged in the marketplace realm if
the realm alias is set to marketplace.example.com.

Examples:
org.forgerock.agents.oauth.login.url.list[0]=example.com|https://openam.example.com/openam/oauth2/
authorize
org.forgerock.agents.oauth.login.url.list[1]=myapp.domain.com|https://openam2.example.com/openam/
oauth2/authorize?realm=sales
org.forgerock.agents.oauth.login.url.list[2]=sales.example.com/marketplace|?realm=marketplace
org.forgerock.agents.oauth.login.url.list[3]=|https://openam3.example.com/openam/oauth2/authorize?
realm=customers&module=myAuthModule

Default: Empty

Type: List of strings, with format domain/path|url?param1=value1¶m2=value2

Hot-swap: Yes

Property: org.forgerock.agents.oauth.login.url.list[n]=[Domain]|[URL][?
realm=value&module=value2&service=value3], introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.login.url, introduced in Java Agent 5.5.2

OAuth 2.0 Login List

Conditionally redirect users based on the incoming request URL. If the incoming request URL
matches a specified domain name, the Java agent redirects the request to an specific URL. That
specific URL can be an AM instance, site, or a different website.

Important

When redirecting incoming login requests to a custom login page, you must add it to either the not-
enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

Use this property only if the OpenAM Login URL (com.sun.identity.agents.config.login.url) is
empty.

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 178

FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Domain/path]|[URL?realm=value¶meter1=value1...], with no
spaces between values. Specify values in conditional redirects as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• URL

Specifies the URL to which redirect incoming login requests. The URL may be an AM instance,
an AM site, or a website other than AM.

Specify a URL in the format protocol://FQDN[:port]/URI, where the port is optional if it is 80 or
443. For example:

https://myweb.example.com/authApp/login.jsp
https://openam.example.com:8443/openam/XUI/#login/
https://openam.example.com:8443/openam/customlogin/login.jsp

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 179

Specifies the AM realm into which the agent logs the users. For example, ?realm=marketplace.

When redirecting to AM's XUI, use an ampersand (&) character instead of a question mark (?)
character. For example, https://openam.example.com:8443/openam/XUI/#login/&realm=marketplace

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

• The users should always log in to the Top Level Realm.

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

• ¶meter1=value1...

Specifies parameters that can be added to the URL. You can add as many parameters as your
custom login pages need.

Chain parameters with an & character, for example,
realm=value¶meter1=value1¶meter2=value2.

Important

When the agent redirects the user to the custom login page, it appends a goto parameter (as configured in
the Goto Parameter Name property) with the agent's CDSSO endpoint and a nonce parameter.

The following is an example of a redirection from the agent to a custom login page:
http://login.example.com/login.jsp?realm=marketplace¶m1=value1&goto=http
%3A%2F%2Fagent.example.com%3A8020%2Flogin%2Fendpoint%3Fnonce
%3Df2fc384a07b7668e05fc6c26c01edf1bac8a3b55%26realm%3Dmarketplace

Note that the goto parameter is URL encoded. If the realm parameter is configured in the redirection rule,
it is also appended to the goto parameter.

Once the user has logged in, the custom login page must redirect back to the agent. To avoid redirection
loops and login failures, consider the following constraints:

• You must ensure that the custom login page redirects back to the agent using the URL contained in the
goto parameter, and that the request contains the nonce parameter.

• You must set the realm parameter in the redirection request to the agent if the users should not log in to
AM's Top Level Realm.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 180

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to.

The following is an example of a redirection from a custom login page to the agent:

http://agent.example.com:8020/login/endpoint?
nonce=f2fc384a07b7668e05fc6c26c01edf1bac8a3b55&realm=marketplace

There is one exception; if the realm where the agent should log the user in to has DNS alias configured,
AM will log in the user to the realm whose DNS alias matches the incoming request URL. For example,
an inbound request from the http://marketplace.example.com URL will be logged in to the marketplace
realm if the realm alias is set to marketplace.example.com, whether there is a realm parameter or not.

Examples:
org.forgerock.agents.legacy.login.url.list[0]=example.com|https://openam.example.com/openam/XUI/
#login&realm=customers
org.forgerock.agents.legacy.login.url.list[1]=myapp.domain.com|https://login.example.com/apps/
login.jsp?realm=sales
org.forgerock.agents.legacy.login.url.list[2]=sales.example.com/marketplace|?realm=marketplace
org.forgerock.agents.legacy.login.url.list[3]=|https://login.example.com/apps/login.jsp?
realm=sales&isblue=true&carowner=true

Default: Empty

Type: List of strings, with format domain/path|url?param1=value1¶m2=value2

Hot-swap: Yes

Property: org.forgerock.agents.oauth.login.url.list[n]=[Domain]|[URL][?
realm=value&module=value2&service=value3], introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.login.url, introduced in Java Agent 5.5.2

Login Reason Parameter Name

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When the agent is configured in "Custom Redirection Login Mode", this property specifies the
name of a parameter included in calls to the custom login URL, to indicate why authentication is
required. The parameter value can be used in a custom login page to provide additional feedback
to the authenticating user.

If this property is specified, the agent includes a parameter named with the property value, and
including one of the following values:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 181

• NO_TOKEN: No token present in the original request.

• TOKEN_EXPIRED: Expiry time of the JWT was in the past.

• EXCEPTION: An unknown exception occured either while parsing the JWT or at some other stage of
authentication.

Tip

To limit the risk of leaking useful information about the authorization process, use Login Reason Value Map
to change the strings for the above values.

For example, specifying org.forgerock.agents.login.reason.parameter.name=auth_reason might cause the
agent to redirect authentication to the following URL:

https://custom.example.com:8443/..../login_endpoint?...&auth_reason=TOKEN_EXPIRED&...

Do not enter a value that clashes with other parameters used for authentication; for example,
realm or goto.

Default: Empty

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.login.reason.parameter.name, introduced in Java Agent 5.7

Login Reason Value Map

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

When Login Reason Parameter Name is configured, this property specifies alternative strings to
use for the supported values.

For example:

org.forgerock.agents.login.reason.map[NO_TOKEN]=notoken
org.forgerock.agents.login.reason.map[TOKEN_EXPIRED]=expired
org.forgerock.agents.login.reason.map[EXCEPTION]=exception

With the above configuration, using org.forgerock.agents.login.reason.parameter.name=auth_reason
might cause the agent redirect authentication to the following URL:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 182

https://custom.example.com:8443/..../login_endpoint?...&auth_reason=notoken&...

Default: Empty

Type: Map, keyed by reason for failure

Property: org.forgerock.agents.login.reason.map, introduced in Java Agent 5.7

Alias: org.forgerock.agents.org.forgerock.agents.login.reason.remapper, introduced in Java Agent 5.7

Login URL Prioritized

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.login.url.prioritized

Login URL Probe

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.login.url.probe.enabled

Login URL Probe Timeout

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.login.url.probe.timeout

Logout URL Properties

OpenAM Logout URL

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.url

OpenAM Conditional Logout URL

Conditionally redirect users based on the incoming request URL. If the incoming request URL
matches a specified domain name, the Java agent redirects the request to an specific URL. That
specific URL can be an AM instance, site, or a different website.

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the
FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Domain/path]|[URL][?realm=value], with no spaces between
values. Specify values in conditional redirects as follows:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 183

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

• URL

Specifies the URL to which redirect incoming logout requests. The URL may be an AM instance,
an AM site, or a website other than AM.

When redirecting to AM, specify the URL of an AM instance or site in the format
protocol://FQDN[:port]/URI/oauth2/authorize, where the port is optional if it is 80 or 443. For
example, https://openam.example.com/openam/oauth2/authorize.

When redirecting to a website other than AM, specify a URL in the format
protocol://FQDN[:port]/URI, where the port is optional if it is 80 or 443. For example, https://
myweb.example.com/authApp.

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Specifies the realm the user should log out from. For example, realm=marketplace.

The realm can also be specified in the URL. For example, if the user should log out from the /
customers realm, construct the URL as https://openam.example.com/openam/oauth2/realms/root/realms/
customers/authorize and do not add the realm parameter.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 184

Examples:
org.forgerock.agents.conditional.logout.url.list[0]=example.com|https://openam.example.com/openam/
oauth2/authorize
org.forgerock.agents.conditional.logout.url.list[2]=sales.example.com/marketplace|?realm=marketplace
org.forgerock.agents.conditional.logout.url.list[3]=|https://openam3.example.com/openam/oauth2/
authorize?realm=customers

Default: false

Type: List of strings, with format domain/path|url?param1=value1¶m2=value2

Hot-swap: Yes

Property: org.forgerock.agents.conditional.logout.url.list[n], introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.conditional.logout.url, introduced in Java Agent 5.5.2

Logout URL Prioritized

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.prioritized

Logout URL Probe

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.probe.enabled

Logout URL Probe Timeout

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.probe.timeout

Authentication Service Properties

AM Protocol

Specifies the protocol used by the AM server.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: Set by installer

Type: Constrained string, probably http or https.

Bootstrap property: Yes

Hot-swap: No

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 185

Property: org.forgerock.agents.am.protocol, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.server.protocol, introduced in Java Agent 5.5.2

AM Host

Specifies the AM server host name.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: Set by installer

Type: String

Bootstrap property: Yes

Hot-swap: no

Property: org.forgerock.agents.am.hostname, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.server.host, introduced in Java Agent 5.5.2

AM Port

Specifies the AM AM server port number.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: Set by installer

Type: Integer

Bootstrap property: Yes

Hot-swap: no

Property: org.forgerock.agents.am.port, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.server.port, introduced in Java Agent 5.5.2

AM Path

Specifies the path to the AM server.

Note that this is a bootstrap property. To change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: Set by installer

Type: String

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 186

Bootstrap property: Yes

Hot-swap: No

Property: org.forgerock.agents.am.path, introduced in Java Agent 5.5.2

Alias: com.iplanet.am.services.deploymentDescriptor, introduced in Java Agent 5.5.2

AM Public URL

The AM Protocol, AM Host, AM Port, and AM Path, assemble into a single "private" URL of
AM or a load balancer fronting a cluster of AM instances. The "private" URL is used by the
Agent for tasks such as establishing websockets, and obtaining authentication tokens or session
information. The AM or load balancer instance can be behind a firewall to which the Agent has
access.

This property is the assembled "public" URL of AM. The "public" URLis is used by the Agent to
redirect the user's browser to AM for login (customised or not), or exchange an SSO token for a
JWT.

Define this property when public access to AM is restricted to a different URL from the "private"
URL.

Note that this is a bootstrap property. To change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: Empty, takes the value of the "private" URL

Type: URL

Bootstrap property: Yes

Hot-swap: No

Property: org.forgerock.agents.public.am.url, introduced in Java Agent 5.6.3

Alias: com.forgerock.agents.public.am.url, introduced in Java Agent 5.6.3

AM Encryption Digest

The hashing algorithm used internally by the Agent. The algorithm is present only in the
configuration files, and cannot be set from the XUI.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Changing this property it is not recommended, bacause it can cause the Agent to fail randomly.

Default: SHA256

Type: String constrained by hashing algorithm type, for example, MD5 (not recommended), SHA1
(not recommended), SHA256, SHA512, PBKDF2.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 187

Bootstrap property: Yes

Hot-swap: No

Property: org.forgerock.openam.encryption.key.digest, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.encryption.key.digest, introduced in Java Agent 5.5.2

AM Encryption Key

The key used to encrypt the Agent password. The key is set during installation process.

The property is present only in the configuration files, and cannot be set from the XUI.

To change the key after installation, manually invoke the Agent installer, with the correct options,
and then manually edit the result into the configuration files.

Default: Set by the installer in the bootstrap properties file

Type: Cryptographically secure random string

Bootstrap property: Yes

Hot-swap: No

Property: am.encryption.pwd, introduced in Java Agent 5.6.2.1

AM Encryption Class

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

The Java class used to encrypt the Agent password. During installation, the class is set in the
bootstrap properties file as AESWrapEncryption, a particularly secure encryption mechanism.

The property is present only in the configuration files, and cannot be set from the XUI.

To change the class after installation, ensure that the class is available at runtime, regenerate
the Agent password using the Agent installer and manually edit the newly generated encrypted
password into the bootstrap property file.

Default: Set during installation in the bootstrap properties file. If manually removed or not set in
bootstrap properties, it defaults to com.iplanet.services.util.JCEEncryption, which is a less secure
encryption mechanism.

Type: Cryptographically secure random string

Bootstrap property: Yes

Hot-swap: No

Property: com.iplanet.security.encryptor, introduced in Java Agent 5.5.2

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 188

Policy Client Service Properties

Policy Evaluation Realm

Realm where AM starts policy evaluation for this Java agent.

Edit this property when AM should start policy evaluation in a realm other than the top-level
realm when handling policy decision requests from this Java agent.

This property is recognized by AM, not the agent.

Default: / (top-level realm)

Type: Map of application name:realm. Before version 5.6.2.1 this property was a string.

Hot-swap: Yes

Property: org.forgerock.agents.policy.evaluation.realm.map, introduced in Java Agent 5.6.2.1

Alias: org.forgerock.openam.agents.config.policy.evaluation.realm, introduced in Java Agent 5.5.2

Policy Set (Application)

The name of the policy set where AM looks for policies to evaluate for this Java agent.

Edit this property when AM should look for policies that belong to a policy set other than
iPlanetAMWebAgentService when handling policy decision requests from this Java agent.

This property is recognized by AM, not the agent.

Default: iPlanetAMWebAgentService

Type: Map of application name:policy set.

Hot-swap: Yes

Property: org.forgerock.agents.policy.set.map, introduced in Java Agent 5.6.2.1

Alias: org.forgerock.openam.agents.config.policy.evaluation.application, introduced in Java Agent
5.5.2

Policy Cache TTL

The time in minutes after which entries in the policy cache timeout and are purged.

Default: 3

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.policy.cache.ttl.minutes, introduced in Java Agent 5.5.2

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 189

Alias: com.sun.identity.agents.polling.interval, introduced in Java Agent 5.5.2

Session Cache TTL

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time in minutes after entries in the session cache timeout and are purged.

If an entry is not cached, the agent must retrieve session information from AM. Therefore, by
default the timeout is much longer than for the policy cache.

If not set, the value is five times the value of Policy Cache TTL.

Default: 15

Type: Integer

Hot-Swap: No

Property: org.forgerock.agents.session.cache.ttl.minutes, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.active.session.cache.ttl.minutes, introduced in Java Agent
5.5.2

Policy Cache Size

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The maximum number of sessions (distinct users) that can stored in the policy evaluation cache at
one time.

Default: 5000

Type: Integer

Hot-Swap: No

Property: org.forgerock.agents.policy.cache.session.size, introduced in Java Agent 5.5.2

Alias: com.sun.identity.policy.client.cachedSessionCap, introduced in Java Agent 5.5.2

Policy Cache Per User

+ Not available in the console for AM 6.5.x and earlier versions.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 190

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The maximum number of distinct policy evaluation entries allowed for each session in the policy
evaluation cache. The number of policy evaluation results that can be stored is Policy Cache Size
multiplied by this property.

The maximum number of policy evaluation results that can be stored is the value of this property
multiplied by the value of Policy Cache Size.

Default: 50

Type: Integer

Hot-Swap: No

Property: org.forgerock.agents.policy.cache.per.session.size, introduced in Java Agent 5.5.2

Alias: com.sun.identity.policy.client.cacheResultsPerUserCap, introduced in Java Agent 5.5.2

Policy Client Cache Mode

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.policy.client.cacheMode

Policy Client Boolean Action Values

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.policy.client.booleanActionValues

Policy Client Resource Comparators

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: org.forgerock.agents.policy.client.resourceComparators, first deprecated in Java Agent 5.5.2

Alias: com.sun.identity.policy.client.resourceComparators, first deprecated in Java Agent 5.5.2

Restrict To Realm

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

A map of application name by realm, to allow only users from the specified realms to access the
specified application.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 191

Default: Empty; no restriction by realm

Type: Map, with format application name:realm

Hot-swap: Yes

Property: org.forgerock.agents.restrict.to.realm.map, introduced in Java Agent 5.6.2.1

Policy Client Clock Skew

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.policy.client.clockSkew

Continuous Security GET List

Specifies the list of HTTP GET request parameters whose names and values the Java agent sets in
the environment map for URL policy evaluation by the AM server.

Default: Empty

Type: List

Hot-swap: Yes

Property: org.forgerock.agents.continuous.security.get.list, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.policy.env.get.param, introduced in Java Agent 5.5.2

Continuous Security POST List

Specifies the list of HTTP POST request parameters whose names and values the Java agent sets
in the environment map for URL policy evaluation by the AM server.

Default: Empty

Type: List

Hot-swap: Yes

Property: org.forgerock.agents.continuous.security.post.list, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.policy.env.post.param, introduced in Java Agent 5.5.2

Continuous Security HTTP Session List

Specifies the list of HTTP session attributes whose names and values the Java agent sets in the
environment map for URL policy evaluation by the AM server.

Default: Empty

Type: List

Reference
Configuring AM Services Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 192

Hot-swap: Yes

Property: org.forgerock.agents.continuous.security.http.session.list, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.policy.env.jsession.param, introduced in Java Agent 5.5.2

Use HTTP-Redirect for composite advice

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: org.forgerock.agents.policy.advice.use.redirect.enabled, first deprecated in Java Agent
5.5.2

Alias: com.sun.identity.agents.config.policy.advice.use.redirect, first deprecated in Java Agent 5.5.2

Composite Advice Encode

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Whether to based64 URL-encode composite advices before sending them to custom login
endpoints. Set to true to increase the security, and protect against cross-site scripting attacks.

The following example is a request from the Agent to AM for a custom login page:

• When this property is false, advices are not encoded:
http://customloginpage.agent.example.com:9191/?composite_advice=
&Advices>
 &AttributeValuePair>
 &Attribute name="AuthSchemeConditionAdvice"/>
 &Value>/:LDAP&/Value>
 &/AttributeValuePair>
&/Advices>
&goto=https://agent.example.com:443/app/post-authn-redirect?nonce=ZYZ...MJY
&resourceURL=https://agent.example.com:443/app/page

• When this property is true, advices are encoded as follows:
http://customloginpage.agent.example.com:9191/?composite_advice=PEFkdm...ZXM-
&goto=https://agent.example.com:443/app/post-authn-redirect?nonce=84Y...E6w
&resourceURL=https://agent.example.com:443/app/page

Default: false

Type: Boolean

Hot-swap: Yes

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 193

Property: org.forgerock.agents.advice.b64.url.encode, introduced in Java Agent 5.6.2.1

Alias: com.forgerock.agents.advice.b64.url.encode, introduced in Java Agent 5.5.2

User Data Cache Service Properties

Enable Notification of User Data Caches

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.idm.remote.notification.enabled

User Data Cache Polling Time

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.iplanet.am.sdk.remote.pollingTime

Enable Notification of Service Data Caches

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.sm.notification.enabled

Service Data Cache Time

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.sm.cacheTime

Session Client Service Properties

Client Polling Period

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.iplanet.am.session.client.polling.period

Configuring Miscellaneous Properties

This section covers miscellaneous Java agent properties. After creating the agent profile, you access
these properties in the AM console under Realms > Realm Name > Applications > Agents > Java >
Agent Name > Miscellaneous.

• "Locale Properties"

• "Port Check Processing Properties"

• "Bypass Principal List Properties"

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 194

• "Deprecated Agent Properties"

Locale Properties
Locale Language

Default language for the agent.

Default: en

Type: String (locale language)

Hot-swap: No

Property: org.forgerock.agents.locale.language, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.locale.language, introduced in Java Agent 5.5.2

Locale Country

The default country for the agent.

Default: US

Type: String (locale country)

Hot-swap: no

Property: org.forgerock.agents.locale.country, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.locale.country, introduced in Java Agent 5.5.2

Port Check Processing Properties
Port Check Enable

When true, activate port checking, correcting requests on the wrong port.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.port.check.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.port.check.enable, introduced in Java Agent 5.5.2

Port Check File

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 195

The name of the file containing the content to handle requests on the wrong port when port
checking is enabled.

Default: true.txt

Type: String

Hot-swap: Yes

Property: org.forgerock.agents.port.check.file, first deprecated in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.port.check.file, first deprecated in Java Agent 5.5.2

Port Check Setting

A map of port to protocol (HTTP/HTTPS). The Java agent uses the map when handling requests
with invalid port numbers during port checking.

Default: 8080 HTTP

Type: Map, with format port number:protocol

Hot-swap: Yes

Property: org.forgerock.agents.port.check.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.port.check.setting, introduced in Java Agent 5.5.2

Bypass Principal List Properties

Bypass Principal List

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.bypass.principal

Deprecated Agent Properties

Goto Parameter Name

Renames the goto parameter. During redirection, the Java agent appends the requested URL to
the renamed parameter. Use this property when your application requires a parameter other than
goto, however, its use is not recommended.

In the following example, the parameter is renamed to goto2:
com.sun.identity.agents.config.redirect.param=goto2

The redirection URL becomes something like this:

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 196

https://www.example.com:8443/accessDenied.html?goto2=http%3A%2F%www.example.com%3A8020%managers
%2Findex.jsp

The URL appended to the goto2 parameter is the URL that the user tried to access when the Java
agent redirected the request to the accessDenied.html page, configured with the org.forgerock.
agents.access.denied.uri.map property.

Default: goto

Type: String

Hot-swap: Yes

Property: com.sun.identity.agents.config.redirect.param, introduced in Java Agent 5.5.2

Legacy User Agent Support Enable

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

When true, provide support for legacy browsers.

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.legacy.support.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.legacy.support.enable, introduced in Java Agent 5.5.2

Legacy User Agent List

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

List of header values that identify legacy browsers. Entries can use the wildcard character, *.

Default: Empty

Type: List of strings

Hot-swap: Yes

Property: org.forgerock.agents.legacy.user.agent.list, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.legacy.user.agent, introduced in Java Agent 5.5.2

Legacy User Agent Redirect URI

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

The URI the Java agent uses to redirect legacy user agent requests.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 197

Default: Empty

Type: List of URI strings

Hot-swap: Yes

Property: org.forgerock.agents.legacy.redirect.uri, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.legacy.redirect.uri, introduced in Java Agent 5.5.2

Configuring Advanced Properties
This section covers advanced Java agent properties. After creating the agent profile, you access these
properties in the AM console under Realms > Realm Name > Applications > Agents > Java > Agent
Name > Advanced.

• "Client Identification Properties"

• "Web Service Processing Properties"

• "Agent Properties"

• "JBoss Application Server Properties"

• "Cross-Site Scripting Detection Properties"

• "Fragment Relay"

• "POST Data Preservation Properties"

• "Custom Properties"

Client Identification Properties
If the Java agent is behind a proxy or load balancer, then the Java agent can get client IP and host
name values from the proxy or load balancer.

When multiple proxies or load balancers sit in the request path, the header values can include a
comma-separated list of values with the first value representing the client, as in client,next-proxy,
first-proxy.

Use the properties in this section for proxies and load balancers that support provision of client IP
and host name in HTTP headers.

Client IP Address Header

The name of the HTTP header that is used to determine the client IP address. If the value is not
defined in the HTTP headers, the value returned by HttpServletRequest.getRemoteAddr is used.

Default: Empty

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 198

Type: String

Property: org.forgerock.agents.http.header.containing.ip.address, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.client.ip.header, introduced in Java Agent 5.5.2

Client Hostname Header

The name of the HTTP header that is used to determine the client remote host. If the value is not
defined in the HTTP headers, the value returned by HttpServletRequest.getRemoteHost is used.

Default: Empty

Type: String

Property: org.forgerock.agents.http.header.containing.remote.hostname, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.client.hostname.header, introduced in Java Agent 5.5.2

Web Service Processing Properties

 The following properties do not apply to Java Agents 5.7, although they may appear in the AM
console:

Web Service Enable

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.enable

Web Service End Points

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.endpoint

Web Service Process GET Enable

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.process.get.enable

Web Service Authenticator

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.authenticator

Web Service Response Processor

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 199

Property: com.sun.identity.agents.config.webservice.responseprocessor

Web Service Internal Error Content File

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.internalerror.content

Web Service Authorization Error Content File

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.webservice.autherror.content

Agent Properties

Agent Host

The host name of the Java agent.

Default: Set by installer

Type: String

Hot-swap: No

Property: org.forgerock.agents.agent.hostname, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.agent.host , introduced in Java Agent 5.5.2

Alternative Agent Port Number

The port number of the Java agent.

Default: Set by installer

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.agent.port, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.agent.port, introduced in Java Agent 5.5.2

Agent Protocol

The protocol used by the Java agent.

Default: Set by installer

Type: Constrained string; probably http or https.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 200

Hot-swap: No

Property: org.forgerock.agents.agent.protocol, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.agent.protocol, introduced in Java Agent 5.5.2

Agent Filter Mode

The agent filter's mode of operation. Use the following values:

• NONE: The Agent performs no authentication check. All requests to access resources are granted

• SSO_ONLY: Only users with a valid SSO token or JWT can access resources.

• URL_POLICY: Requests that meet requirements of an AM policy can access resources.

• ALL: For backward compatibility only. In a later release, this value will be changed to URL_POLICY.

For more information, see "Configuring the Agent Filter".

Default: URL_POLICY

Type: Map keyed by application name of constrained values

Property: org.forgerock.agents.filter.mode.map, introduced in Java Agent 5.6.2.1

Alias: com.sun.identity.agents.config.filter.mode, introduced in Java Agent 5.5.2

Agent Configuration Change Notification

Flag to indicate whether the Agent subscribes to WebSocket notifications from AM for
configuration changes. This property only applies when you store the agent profile in AM's
configuration data store.

Default: true

Type: Boolean

Property: org.forgerock.agents.config.change.notifications.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.change.notification.enable, introduced in Java Agent 5.5.2

Agent Policy Change Notification

Flag to indicate whether the Agent subscribes to WebSocket notifications from AM for policy
changes.

Default: true

Type: Boolean

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 201

Property: org.forgerock.agents.policy.change.notifications.enabled, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.notification.enabled, introduced in Java Agent 5.5.2

Session Logout Notification

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

Flag to indicate whether the Agent subscribes to WebSocket notifications from AM for session
logout.

Default: true

Type: Boolean

Property: org.forgerock.agents.session.change.notifications.enabled, introduced in Java Agent 5.5.2

Obsolete Agent Logout Notification

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Flag to indicate whether the Agent subscribes to WebSocket notifications from AM for session
logout.

Use Session Logout Notification instead of this property.

Default: Empty

Type: Boolean

Property: com.iplanet.am.session.client.polling.enabled, first deprecated in Java Agent 5.5.2

Agent Notification URL

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

When creating an agent profile, the AM console configures a default value for this property to
maintain compatibility with earlier versions of the Java agent. The default value can be safely
removed.

Use WebSocket notifications instead of this property.

Default: Empty

Type: String; a dummy endpoint within the agent

Property: org.forgerock.agents.obsolete.notification.url, first deprecated in Java Agent 5.5.2

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 202

Alias: com.sun.identity.client.notification.url, first deprecated in Java Agent 5.5.2

JBoss Application Server Properties

WebAuthentication Available

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

Property: com.sun.identity.agents.config.jboss.webauth.available

Cross-Site Scripting Detection Properties

Possible XSS code elements

Strings that, when found in the request, cause the agent to redirect the client to an error page.

Default: Empty

Type: List of cross site scripting elements

Hot-swap: Yes

Property: org.forgerock.agents.xss.code.element.list, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.xss.code.elements, introduced in Java Agent 5.5.2

XSS detection redirect URI

Maps applications to URIs of customized pages. When a cross site scripting attack is detected,
the agent redirects clients to the URI.

For example, to redirect clients of MyApp to /myapp/error.html, enter MyApp as the Map Key and /
myapp/error.html as the Corresponding Map Value.

Default: /agentapp/XSSCodeDetected.html

Type: Map of application name:URI

Hot-swap: Yes

Property: org.forgerock.agents.xss.redirect.uri.map, introduced in Java Agent 5.7

Alias: com.sun.identity.agents.config.xss.redirect.uri, introduced in Java Agent 5.5.2

Fragment Relay

Fragment Relay URI

+ Not available in the console for AM 6.5.x and earlier versions.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 203

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

A valid URI to act as a dummy endpoint for processing captured URL fragments.

When empty, unauthenticated requests to a URL with a fragment are authenticated and then
redirected to the URL without the fragment. For example, a request to http://my.domain.com:8080/
myapp/index.html#chapter-1 is authenticated and redirected to http://my.domain.com:8080/myapp/index.
html. The fragment #chapter-1 is lost.

When set, unauthenticated requests are authenticated and then redirected to the requested URL.
For example, a request to http://my.domain.com:8080/myapp/index.html#chapter-1 is authenticated and
redirected to the same URL. The fragment is not lost.

When this property is set, an extra redirect is incurred for all unauthenticated requests, to
capture and process the URL fragment.

Use a dummy URI within the Agent application, such as /agentapp/pre-authn-fragment-capture. Avoid
dummy URIs used for other purposes, such as CDSSO Redirect URI and Authentication Exchange
URI.

Default: Empty

Type: String (URL of a dummy endpoint within the Agent)

Hot-swap: Yes

Property: org.forgerock.agents.authn.fragment.relay.uri, introduced in Java Agent 5.7

POST Data Preservation Properties

For more information, see "POST Data Preservation".

POST Data Preservation Enabled

When true, HTTP POST data preservation is enabled.

POST data is stored before redirecting the browser to the login screen, and then auto-submitting
the same POST after successful authentication to the original URL. For more information, see
"POST Data Preservation".

Default: false

Type: Boolean

Hot-swap: Yes

Property: org.forgerock.agents.post.data.preservation.enabled, introduced in Java Agent 5.5.2

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 204

Alias: com.sun.identity.agents.config.postdata.preserve.enable, introduced in Java Agent 5.5.2

Missing PDP Entry URL

A map of URLs to which the agent redirects when the PDP cache entry is discarded because of a
cache timeout. The URL is expected to be a page to explain what has happened.

The Java agent redirects to URL in this list, or gives an HTTP 403 Forbidden.

Default: Emptry

Type: Map, with format application name:URL

Hot swap: Yes

Property: org.forgerock.agents.pdp.noentry.url.map, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.postdata.preserve.cache.noentry.url, introduced in Java Agent
5.5.2

PDP Cache TTL in Minutes

+ Not available in the console for AM 6.5.x and earlier versions.

To set as a custom property in AM, go to Realms > Realm Name > Applications > Agents >
Java > Agent Name > Advanced > Custom Properties.

The time in minutes after which entries in the Post Data Preservation cache timeout and are
purged.

Default: 5

Type: Integer

Hot swap: No

Property: org.forgerock.agents.pdp.cache.ttl.minutes, introduced in Java Agent 5.5.2

PDP entry TTL Milliseconds

 This property does not apply to Java Agents 5.7, although it might appear in the AM console.

The time in milliseconds after which entries in the Post Data Preservation cache timeout and are
purged. Deprecated, use PDP Cache TTL in Minutes instead.

Default: 300000

Type: Integer

Hot swap: No

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 205

Property: com.sun.identity.agents.config.postdata.preserve.cache.entry.ttl, first deprecated in Java
Agent 5.5.2

PDP Sticky Session Mode

Specifies how to send a sticky session value, as follows:

• URL: Send as an HTTP parameter in the URL string.

• Cookie: Send as a cookie.

Default: URL

Type: Constrained string

Hot-swap: Yes

Property: org.forgerock.agents.pdp.sticky.session.mode, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.postdata.preserve.stickysession.mode, introduced in Java Agent
5.5.2

PDP Sticky Session Value

Specifies the key-value pair for sticky session mode, depending on the value of PDP Sticky
Session Mode, as follows:

• When PDP Sticky Session Mode is URL, this property sets the name of the query parameter and
its value.

For example, the value lb=myserver adds lb=myserver to the URL query string

• When PDP Sticky Session Mode is Cookie, this property sets the name and value for the cookie.

For example, the value lb=myserver sets an lb cookie with the value myserver.

Default: Empty

Type: String, of the form name=value

Hot-swap: Yes

Property: org.forgerock.agents.pdp.sticky.session.value, introduced in Java Agent 5.5.2

Alias: com.sun.identity.agents.config.postdata.preserve.stickysession.value, introduced in Java Agent
5.5.2

PDP Cache Total Size

The maximum number of megabytes allowed for the PDP cache. When the cache reaches the
maximum, old entries are discarded.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 206

Use this property to mitigate the risk of DoS attacks. If a malicious user posts a large amount of
information to the cache, the cache size is limited.

Takes precedence if PDP Cache Maximum Entries is also set.

Default: Empty

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.pdp.cache.total.size.mb, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.postdata.preserve.cache.entry.max.total.size.mb, introduced
in Java Agent 5.5.2

PDP Cache Maximum Entries

The maximum number of megabytes entries in the PDP cache. When the cache reaches the
maximum, old entries are discarded.

Use this property to mitigate the risk of DoS attacks. If a malicious user posts a large amount of
information to the cache, the cache size is limited.

Ignored if PDP Cache Total Size is also set.

Default: 1000

Type: Integer

Hot-swap: No

Property: org.forgerock.agents.pdp.cache.size, introduced in Java Agent 5.5.2

Alias: org.forgerock.openam.agents.config.postdata.preserve.cache.entry.max.entries, introduced in Java
Agent 5.5.2

Custom Properties

Custom Properties

Additional properties to augment the set of properties supported by the Java agent. Custom
properties can be specified as follows:

• customproperty=custom-value1

• customlist[0]=customlist-value-0

• customlist[1]=customlist-value-1

Reference
Configuring Agent Authenticators

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 207

• custommap[key1]=custommap-value-1

• custommap[key2]=custommap-value-2

Tip

Add any property that is not yet in the AM console as a custom property.

Property: com.sun.identity.agents.config.freeformproperties

Configuring Agent Authenticators
An agent authenticator has read-only access to multiple agent profiles defined in the same realm,
typically allowing an agent to read web service agent profiles.

After creating the agent profile, access agent properties in the AM console navigatin to Realms >
Realm Name > Applications > Agents > Agent Authenticator > Agent Name.

Password

Specifies the password the agent uses to connect to AM.

Status

Specifies whether the agent profile is active, and so can be used.

Agent Profiles allowed to Read

Specifies which agent profiles the agent authenticator can read in the realm.

Agent Root URL for CDSSO

Specifies the list of agent root URLs for CDSSO. The valid value is in the format
protocol://hostname:port/ where protocol represents the protocol used, such as http or https,
hostname represents the host name of the system where the agent resides, and port represents
the port number on which the agent is installed. The slash following the port number is required.

If your agent system also has virtual host names, add URLs with the virtual host names to this list
as well. AM checks that goto URLs match one of the agent root URLs for CDSSO.

Property: sunIdentityServerDeviceKeyValue[n]=protocol://hostname:port/

Monitoring Reference
This section contains reference information for the metric types, and monitoring metrics.

Reference
Monitoring Metric Types

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 208

Monitoring Metric Types

This section describes the monitoring metric types that are available in Java Agents. The available
types are:

• Timer

• Gauge

• DistinctCounter

Timer

Metric that combines both rate and duration information.

• Fields

When using the Common REST interface, the Timer metric type has the following fields:

Field Description
_id The metric ID.
_type The metric type.
count The number of events recorded for this metric.
total The sum of the durations recorded for this metric.
min The minimum duration recorded for this metric.
max The maximum duration recorded for this metric.
mean The mean average duration recorded for this metric.
stddev The standard deviation of durations recorded for this metric.
duration_units The units used for measuring the durations in the metric.
p50 50% of the durations recorded are at or below this value.
p75 75% of the durations recorded are at or below this value.
p95 95% of the durations recorded are at or below this value.
p98 98% of the durations recorded are at or below this value.
p99 99% of the durations recorded are at or below this value.
p999 99.9% of the durations recorded are at or below this value.
m1_rate The one-minute average rate.
m5_rate The five-minute average rate.
m15_rate The fifteen-minute average rate.
mean_rate The average rate.
rate_units The units used for measuring the rate of the metric.

Reference
Monitoring Metric Types

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 209

Note

Duration-based values, such as min, max, and p50, are weighted towards newer data. By representing
approximately the last five minutes of data, the timers make it easier to see recent changes in behavior,
rather than a uniform average of recordings since the server was started.

The following is an example of the requests.granted.not-enforced metric from the Common REST
endpoint:
{
 "_id" : "requests.granted.not-enforced",
 "_type" : "timer",
 "count" : 486,
 "total" : 80.0,
 "min" : 0.0,
 "max" : 1.0,
 "mean" : 0.1905615495053855,
 "stddev" : 0.39274399467782056,
 "duration_units" : "milliseconds",
 "p50" : 0.0,
 "p75" : 0.0,
 "p95" : 1.0,
 "p98" : 1.0,
 "p99" : 1.0,
 "p999" : 1.0,
 "m1_rate" : 0.1819109974890356,
 "m5_rate" : 0.05433445522996721,
 "m15_rate" : 0.03155662103953588,
 "mean_rate" : 0.020858521722211427,
 "rate_units" : "calls/second"
}

• Prometheus Fields

The Prometheus endpoint does not provide rate-based statistics, as rates can be calculated from
the time-series data.

When using the Prometheus interface, the Timer metric type has the following fields:

Field Description
TYPE The metric ID, and type. Note that the Timer metric type is reported as a

Summary type. Formatted as a comment.
_count The number of events recorded.
_total The sum of the durations recorded.
{quantile="0.5"} 50% of the durations are at or below this value.
{quantile="0.75"} 75% of the durations are at or below this value.
{quantile="0.95"} 95% of the durations are at or below this value.
{quantile="0.98"} 98% of the durations are at or below this value.

Reference
Monitoring Metric Types

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 210

Field Description
{quantile="0.99"} 99% of the durations are at or below this value.
{quantile="0.999"} 99.9% of the durations are at or below this value.

Note

Duration-based quantile values are weighted towards newer data. By representing approximately the last
five minutes of data, the timers make it easier to see recent changes in behavior, rather than a uniform
average of recordings since the server was started.

The following is an example of the ja_requests{access=granted,decision=allowed-by-policy} metric
from the Prometheus endpoint:
TYPE ja_requests_seconds summary
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.5",}
 0.013000000000000001
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.75",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.95",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.98",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.99",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.999",}
 1.1380000000000001
ja_requests_count{access="granted",decision="allowed-by-policy",} 7.0
ja_requests_seconds_total{access="granted",decision="allowed-by-policy",} 1.21

Gauge

Metric for a numerical value that can increase or decrease. The value for a gauge is calculated
when requested, and represents the state of the metric at that specific time.

• Fields

When using the Common REST interface, the Timer metric type has the following fields:

Field Description
_id The metric ID.
_type The metric type.
value The current value of the metric.

The following is an example of the jvm.used-memory metric from the Common REST endpoint:
{
 "_id" : "jvm.used-memory",
 "_type" : "gauge",
 "value" : 2.13385216E9
}

Reference
Monitoring Metric Types

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 211

• Prometheus Fields

When using the Prometheus interface, the Timer metric type has the following fields:

Field Description
TYPE The metric ID, and type. Formatted as a comment.
{Metric ID} The current value. Large values may be represented in scientific E-notation.

The following is an example of the ja_jvm_used_memory_bytes metric from the Prometheus
endpoint:
TYPE ja_jvm_used_memory_bytes gauge
ja_jvm_used_memory_bytes 1.418723328E9

DistinctCounter

Metric providing an estimate of the number of unique values recorded.

For example, this could be used to estimate the number of unique users who have authenticated,
or unique client IP addresses.

Note

The DistinctCounter metric is calculated per instance of AM, and cannot be aggregated across multiple
instances to get a site-wide view.

• Fields

When using the Common REST interface, the DistinctCounter metric type has the following
fields:

Field Description
_id The metric ID.
_type The metric type. Note that the distinctCounter type is reported as a gauge

type. The output formats are identical.
value The calculated estimate of the number of unique values recorded in the

metric.

The following is an example of the authentication.unique-uuid.success metric from the Common
REST endpoint:
{
 "_id" : "authentication.unique-uuid.success",
 "_type" : "gauge",
 "value" : 3.0
}

• Prometheus Fields

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 212

When using the Prometheus interface, the distinctCounter metric type has the following fields:

Field Description
TYPE The metric ID, and type. Note that the distinctCounter type is reported as a

gauge type. The output formats are identical. Formatted as a comment.
{Metric ID} The calculated estimate of the number of unique values recorded in the

metric.

The following is an example of the ja_notenforced_ip_unmatched_cache_size metric from the
Prometheus endpoint:
TYPE ja_notenforced_ip_unmatched_cache_size gauge
ja_notenforced_ip_unmatched_cache_size 3.0

Monitoring Metrics
Java agents expose the monitoring metrics described in this section.

Audit Handler Metrics
Java Agents expose the following audit handler-related monitoring metrics:

audit.access.generate

Time taken to generate an audit object. (Timer)

Prometheus name:
ja_audit_generate{topic=access}

audit.handler.<handler-type>.default.access.<outcome>

Time taken to audit outcomes, both locally to the agent and remotely in AM. (Timer)

Prometheus name:
ja_audit{handler-type=<handler-type>,name=default,topic=access,outcome=<outcome>}

Labels:

<handler-type>

am-delegate. Remote auditing performed by AM. (Prometheus: am_delegate)

json. Local audit logging using JSON.

<outcome>

success

failure

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 213

Endpoint and REST SDK Metrics
Java Agents expose the following endpoint and REST SDK-related monitoring metrics:

session-info

Time taken to retrieve user session information from AM. (Timer)

Prometheus name:
ja_session_info

user-profile

Time taken to retrieve the user profile information from AM. (Timer)

Prometheus name:
ja_user_profile

policy-decision

Time taken to retrieve policy decisions from AM. (Timer)

Prometheus name:
ja_policy_decision

JSON Web Token (JWT) Metrics
Java Agents expose the following JWT-related monitoring metrics:

jwt.cache.size

The size of the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_size

jwt.cache.eviction

The eviction count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_eviction

jwt.cache.load-count

The load count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_load_count

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 214

jwt.cache.load-time

The load time for the JWT cache, in milliseconds. (Gauge)

Prometheus name:
ja_jwt_cache_load_time

jwt.cache.hit

The hit count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache{outcome=hit}

jwt.cache.miss

The miss count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache{outcome=miss}

JVM Metrics
Java agents expose the JVM-related monitoring metrics covered in this section.

Tip

To get the metric name used by Prometheus, prepend ja_ to the names below, and replace period (.) and
hyphen (-) characters with underscore (_) characters. For example, the jvm.available-cpus metric is named ja_
jvm_available_cpus in Prometheus.

JVM Metrics by Name

Name Description
jvm.available-cpus Number of processors available to the Java virtual

machine. (Gauge)
jvm.class-loading.loaded Number of classes loaded since the Java virtual

machine started. (Gauge)
jvm.class-loading.unloaded Number of classes unloaded since the Java virtual

machine started. (Gauge)
jvm.garbage-collector.PS-MarkSweep.count Number of collections performed by the "parallel

scavenge mark sweep" garbage collection algorithm.
(Gauge)

jvm.garbage-collector.PS-MarkSweep.time Approximate accumulated time taken by the "parallel
scavenge mark sweep" garbage collection algorithm.
(Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 215

Name Description
jvm.garbage-collector.PS-Scavenge.count Number of collections performed by the "parallel

scavenge" garbage collection algorithm. (Gauge)
jvm.garbage-collector.PS-Scavenge.time Approximate accumulated time taken by the "parallel

scavenge" garbage collection algorithm. (Gauge)
jvm.memory-usage.heap.init Amount of heap memory that the Java virtual machine

initially requested from the operating system. (Gauge)
jvm.memory-usage.heap.max Maximum amount of heap memory that the Java

virtual machine will attempt to use. (Gauge)
jvm.memory-usage.heap.committed Amount of heap memory that is committed for the

Java virtual machine to use. (Gauge)
jvm.memory-usage.heap.used Amount of heap memory used by the Java virtual

machine. (Gauge)
jvm.memory-usage.total.init Amount of memory that the Java virtual machine

initially requested from the operating system. (Gauge)
jvm.memory-usage.total.max Maximum amount of memory that the Java virtual

machine will attempt to use. (Gauge)
jvm.memory-usage.non-heap.init Amount of non-heap memory that the Java virtual

machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.non-heap.max Maximum amount of non-heap memory that the Java
virtual machine will attempt to use. (Gauge)

jvm.memory-usage.non-heap.committed Amount of non-heap memory that is committed for the
Java virtual machine to use. (Gauge)

jvm.memory-usage.non-heap.used Amount of non-heap memory used by the Java virtual
machine. (Gauge)

jvm.memory-usage.pools.Code-Cache.init Amount of "code cache" memory that the Java virtual
machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.pools.Code-Cache.max Maximum amount of "code cache" memory that the
Java virtual machine will attempt to use. (Gauge)

jvm.memory-usage.pools.Code-Cache.committed Amount of "code cache" memory that is committed for
the Java virtual machine to use. (Gauge)

jvm.memory-usage.pools.Code-Cache.used Amount of "code cache" memory used by the Java
virtual machine. (Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.init Amount of "compressed class space" memory that
the Java virtual machine initially requested from the
operating system. (Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.init Maximum amount of "compressed class space"
memory that the Java virtual machine will attempt to
use. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 216

Name Description
jvm.memory-usage.pools.Compressed-Class-Space.
committed

Amount of "compressed class space" memory that
is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.used Amount of "compressed class space" memory used by
the Java virtual machine. (Gauge)

jvm.memory-usage.pools.Metaspace.init Amount of "metaspace" memory that the Java virtual
machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.pools.Metaspace.max Maximum amount of "metaspace" memory that the
Java virtual machine will attempt to use. (Gauge)

jvm.memory-usage.pools.Metaspace.committed Amount of "metaspace" memory that is committed for
the Java virtual machine to use. (Gauge)

jvm.memory-usage.pools.Metaspace.used Amount of "metaspace" memory used by the Java
virtual machine. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.init Amount of "parallel scavenge eden space" memory
that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.max Maximum amount of "parallel scavenge eden space"
memory that the Java virtual machine will attempt to
use. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.committed Amount of "parallel scavenge eden space" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Eden-Space.used-after-gc Amount of "parallel scavenge eden space" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.used Amount of "parallel scavenge eden space" memory
used by the Java virtual machine. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.init Amount of "parallel scavenge old generation" memory
that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.max Maximum amount of "parallel scavenge old
generation" memory that the Java virtual machine will
attempt to use. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.committed Amount of "parallel scavenge old generation" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Old-Gen.used-after-gc Amount of "parallel scavenge old generation" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.used Amount of "parallel scavenge old generation" memory
used by the Java virtual machine. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 217

Name Description
jvm.memory-usage.pools.PS-Survivor-Space.init Amount of "parallel scavenge survivor space" memory

that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.max Maximum amount of "parallel scavenge survivor
space" memory that the Java virtual machine will
attempt to use. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.committed Amount of "parallel scavenge survivor space" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.used-
after-gc

Amount of "parallel scavenge survivor space" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.used Amount of "parallel scavenge survivor space" memory
used by the Java virtual machine. (Gauge)

jvm.memory-usage.total.committed Amount of memory that is committed for the Java
virtual machine to use. (Gauge)

jvm.memory-usage.total.used Amount of memory used by the Java virtual machine.
(Gauge)

jvm.thread-state.blocked.count Number of threads in the BLOCKED state. (Gauge)
jvm.thread-state.count Number of live threads including both daemon and

non-daemon threads. (Gauge)
jvm.thread-state.daemon.count Number of live daemon threads. (Gauge)
jvm.thread-state.new.count Number of threads in the NEW state. (Gauge)
jvm.thread-state.runnable.count Number of threads in the RUNNABLE state. (Gauge)
jvm.thread-state.terminated.count Number of threads in the TERMINATED state.

(Gauge)
jvm.thread-state.timed_waiting.count Number of threads in the TIMED_WAITING state.

(Gauge)
jvm.thread-state.waiting.count Number of threads in the WAITING state. (Gauge)

Not Enforced Rule Metrics

Java Agents expose the following not enforced rule-related monitoring metrics:

notenforced-uri.matched.cache.size

The size of the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_size

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 218

notenforced-uri.matched.cache.eviction

The eviction count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_eviction

notenforced-uri.matched.cache.load-count

The load count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_load_count

notenforced-uri.matched.cache.load-time

The load time for the not-enforced URI matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_load_time

notenforced-uri.matched.cache.hit

The hit count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache{outcome=hit}

notenforced-uri.matched.cache.miss

The miss count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache{outcome=miss}

notenforced-uri.unmatched.cache.size

The size of the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_size

notenforced-uri.unmatched.cache.eviction

The eviction count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 219

ja_notenforced_uri_unmatched_cache_eviction

notenforced-uri.unmatched.cache.load-count

The load count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_load_count

notenforced-uri.unmatched.cache.load-time

The load time for the not-enforced URI unmatched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_load_time

notenforced-uri.unmatched.cache.hit

The hit count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache{outcome=hit}

notenforced-uri.unmatched.cache.miss

The miss count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache{outcome=miss}

notenforced-ip.matched.cache.size

The size of the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_size

notenforced-ip.matched.cache.eviction

The eviction count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_eviction

notenforced-ip.matched.cache.load-count

The load count for the not-enforced IP matched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 220

Prometheus name:
ja_notenforced_ip_matched_cache_load_count

notenforced-ip.matched.cache.load-time

The load time for the not-enforced IP matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_load_time

notenforced-ip.matched.cache.hit

The hit count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache{outcome=hit}

notenforced-ip.matched.cache.miss

The miss count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache{outcome=miss}

notenforced-ip.unmatched.cache.size

The size of the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_size

notenforced-ip.unmatched.cache.eviction

The eviction count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_eviction

notenforced-ip.unmatched.cache.load-count

The load count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_load_count

notenforced-ip.unmatched.cache.load-time

The load time for the not-enforced IP unmatched cache, in milliseconds. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 221

Prometheus name:
ja_notenforced_ip_unmatched_cache_load_time

notenforced-ip.unmatched.cache.hit

The hit count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache{outcome=hit}

notenforced-ip.unmatched.cache.miss

The miss count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache{outcome=miss}

notenforced-compound.matched.cache.size

The size of the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_size

notenforced-compound.matched.cache.eviction

The eviction count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_eviction

notenforced-compound.matched.cache.load-count

The load count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_load_count

notenforced-compound.matched.cache.load-time

The load time for the not-enforced compound matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_load_time

notenforced-compound.matched.cache.hit

The hit count for the not-enforced compound matched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 222

Prometheus name:
ja_notenforced_compound_matched_cache{outcome=hit}

notenforced-compound.matched.cache.miss

The miss count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache{outcome=miss}

notenforced-compound.unmatched.cache.size

The size of the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_size

notenforced-compound.unmatched.cache.eviction

The eviction count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_eviction

notenforced-compound.unmatched.cache.load-count

The load count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_load_count

notenforced-compound.unmatched.cache.load-time

The load time for the not-enforced compound unmatched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_load_time

notenforced-compound.unmatched.cache.hit

The hit count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache{outcome=hit}

notenforced-compound.unmatched.cache.miss

The miss count for the not-enforced compound unmatched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 223

Prometheus name:
ja_notenforced_compound_unmatched_cache{outcome=miss}

Policy Decision Metrics

Java Agents expose the following policy decision-related monitoring metrics:

policy-decision.cache.size

The size of the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_size

policy-decision.cache.eviction

The eviction count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_eviction

policy-decision.cache.load-count

The load count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_load_count

policy-decision.cache.load-time

The load time for the policy decision cache, in milliseconds. (Gauge)

Prometheus name:
ja_policy_decision_cache_load_time

policy-decision.cache.hit

The hit count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache{outcome=hit}

policy-decision.cache.miss

The miss count for the policy decision cache. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 224

ja_policy_decision_cache{outcome=miss}

POST Data Preservation (PDP) Metrics
Java Agents expose the following PDP-related monitoring metrics:

pdp.cache.size

The size of the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_size

pdp.cache.eviction

The eviction count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_eviction

pdp.cache.load-count

The load count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_load_count

pdp.cache.load-time

The load time for the post-data preservation cache, in milliseconds. (Gauge)

Prometheus name:
ja_pdp_cache_load_time

pdp.cache.hit

The hit count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache{outcome=hit}

pdp.cache.miss

The miss count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache{outcome=miss}

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 225

Request Metrics

Java Agents expose the following request-related monitoring metrics:

requests.<access>.<decision>

Rate of granted/denied requests and their decision. (Timer)

Prometheus name:
ja_requests{access=<access>,decision=<decision>}

Labels:

<access>

granted

denied

<decision>

not-enforced. Request matched a not enforced rule.

no-valid-token. Request did not have a valid SSO token or an OpenID Connect JSON Web
Token.

allowed-by-policy. Request matched a policy, which allowed access.

denied-by-policy. Request matched a policy, which denied access.

am-unavailable. The AM instance was not reachable.

agent-exception. An internal error (exception) occurred within the agent.

Session Information Metrics

Java Agents expose the following session information-related monitoring metrics:

session-info.cache.size

The size of the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache_size

session-info.cache.eviction

The eviction count for the session information cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 226

Prometheus name:
ja_session_info_cache_eviction

session-info.cache.load-count

The load count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache_load_count

session-info.cache.load-time

The load time for the session information cache, in milliseconds. (Gauge)

Prometheus name:
ja_session_info_cache_load_time

session-info.cache.hit

The hit count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache{outcome=hit}

session-info.cache.miss

The miss count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache{outcome=miss}

SSO Token to JWT Exchange Metrics

Java Agents expose the following SSO token to JWT exchange-related monitoring metrics:

sso-exchange.cache.size

The size of the SSO token exchange cache. (Gauge)

Prometheus name:
ja_sso_exchange_cache_size

sso-exchange.cache.eviction

The eviction count for the SSO token exchange cache. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 227

ja_sso_exchange_cache_eviction

sso-exchange.cache.load-count

The load count for the SSO token exchange cache. (Gauge)

Prometheus name:
ja_sso_exchange_cache_load_count

sso-exchange.cache.load-time

The load time for the SSO token exchange, in milliseconds. (Gauge)

Prometheus name:
ja_sso_exchange_cache_load_time

sso-exchange.cache.hit

The hit count for the SSO token exchange cache. (Gauge)

Prometheus name:
ja_sso_exchange_cache{outcome=hit}

sso-exchange.cache.miss

The miss count for the SSO token exchange cache. (Gauge)

Prometheus name:
ja_sso_exchange_cache{outcome=miss}

Websocket Metrics

Java Agents expose the following websocket-related monitoring metrics:

websocket.last-received

The number of milliseconds since anything was received over the websocket, for example a ping
or a notification. (Gauge)

Prometheus name:
ja_websocket_last_received

websocket.last-sent

The number of milliseconds since anything was sent over the websocket. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 228

ja_websocket_last_sent

websocket.config-change.received

The number of configuration change notifications received. Note that some may be ignored if the
realm or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_config_change_received

websocket.config-change.processed

The number of configuration change notifications processed, that were not ignored.
(DistinctCounter)

Prometheus name:
ja_websocket_config_change_processed

websocket.policy-change.received

The number of policy change notifications received. Note that some may be ignored if the realm
or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_policy_change_received

websocket.policy-change.processed

The number of policy change notifications processed, that were not ignored. (DistinctCounter)

Prometheus name:
ja_websocket_policy_change_processed

websocket.session-logout.received

The number of session logout notifications received. Note that some may be ignored if the realm
or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_session_logout_received

websocket.session-logout.processed

The number of session logout notifications processed, that were not ignored. (DistinctCounter)

Prometheus name:
ja_websocket_session_logout_processed

Reference
Command-Line Tool Reference

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 229

websocket.ping-pong

The ping/pong round trip time. (Timer)

Prometheus name:
ja_websocket_ping_pong

Command-Line Tool Reference

Reference

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 230

Name
agentadmin — manage the installation of Java agents

Synopsis

agentadmin {options}

Description

This command manages Java Agent installations. The agentadmin command requires a Java runtime
environment.

Options

The following options are supported.

--install

Installs a new agent instance.

Usage: agentadmin --install [--useResponse | --saveResponse file-name]

--useResponse

Use this option to install in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses in a response file specified by file-name.

--custom-install

Installs a new agent instance, specifying additional configuration options such as the key used to
encrypt passwords.

Usage: agentadmin --custom-install [--useResponse | --saveResponse file-name]

--useResponse

Use this option to install in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses to the file-name file.

Reference

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 231

--acceptLicense

Auto-accepts the software license agreement. If this option is present on the command line with
the --install or --custom-install option, the license agreement prompt is suppressed and the agent
installation continues. To view the license agreement, open <server-root>/legal-notices/license.txt.

--uninstall

Uninstalls an existing agent instance.

Usage: agentadmin --uninstall [--useResponse | --saveResponse file-name]

--useResponse

Use this option to uninstall in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses to the file-name file.

--version

Displays the version information.

--uninstallAll

Uninstalls all the agent instances.

--listAgents

Displays details of all the configured agents.

--agentInfo

Displays details of the agent corresponding to the specified agent-id.

Example: agentadmin --agentInfo agent_001

--encrypt

Encrypts a given string.

Usage: agentadmin --encrypt agent-instance password-file

agent-instance

Agent instance identifier. The encryption functionality requires the use of agent instance
specific encryption key present in its configuration file.

Reference
Configuring Apache HTTP Server as a Reverse Proxy Example

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 232

password-file

File containing the password to encrypt.

--getEncryptKey

Generates an agent encryption key.

Configuring Apache HTTP Server as a Reverse Proxy Example
This section demonstrates a possible configuration of Apache as a reverse proxy between AM and the
agent, but you can use any reverse proxy that supports the WebSocket protocol.

Reverse Proxy Configured Between the Agent and AM

Agent

Protected

Resource

Java Container

HTTPS

ClientsClientsClients

Access

Managem ent

Access

Managem ent

Access

Managem ent

HTTPS

Secure
Web

Socket

HTTP

Web
Socket

Reverse
Proxy

Note that the communication protocol changes from HTTPS to HTTP.

To Configure Apache as a Reverse Proxy Example

This procedure demonstrates how to configure Apache as a reverse proxy between an agent and a
single AM instance. Refer to the Apache documentation to configure Apache for load balancing and
any other requirement for your environment:

Reference
Configuring Apache HTTP Server as a Reverse Proxy Example

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 233

1. Locate the httpd.conf file in your deployed reverse proxy instance.

2. Add the modules required for a proxy configuration as follows:
Modules required for proxy
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so

The mod_proxy_wstunnel.so module is required to support the WebSocket protocol used for
notification between AM and the agents.

3. Add the proxy configuration inside the VirtualHost context. Consider the following directives:
<VirtualHost 192.168.1.1>
...
Proxy Config
RequestHeader set X-Forwarded-Proto "https"
ProxyPass "/openam/notifications" "ws://openam.example.com:8080/openam/notifications"
 Upgrade=websocket
ProxyPass "/openam" "http://openam.example.com:8080/openam"
ProxyPassReverseCookieDomain "openam.internal.example.com" "proxy.example.com"
ProxyPassReverse "/openam" "http://openam.example.com:8080/openam"
...
</VirtualHost>

Key:

RequestHeader. Set this directive to https or http depending on the proxy configuration. If
the proxy is configured for https, as in the example depicted in the diagram above, set the
directive to https. Otherwise, set it to http.

In a future step you will configure AM to recognize the forwarded header and use it in the
goto parameter for redirecting back to the agent after authentication.
ProxyPass. Set this directive to allow WebSocket traffic between AM and the agent.

If you have HTTPS configured between the proxy and AM, set the directive to use the wss
protocol instead of ws.
ProxyPass. Set this directive to allow HTTP traffic between AM and the agent.
ProxyPassReverseCookieDomain. Set this directive to rewrite the domain string in Set-Cookie
headers in the format internal domain (AM's domain) public domain (proxy's domain).
ProxyPassReverse. Set this directive to the same value configured for the ProxyPass directive.

For more information about configuring Apache as a reverse proxy, refer to the Apache
documentation.

4. Restart the reverse proxy instance.

5. Configure AM to recover the forwarded header you configured in the reverse proxy. Also, review
other configurations that may be required in an environment that uses reverse proxies. For more
information, see "Regarding Communication Between AM and Agents"

https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 234

Implementing Custom Task Handlers
This section gives steps and example handlers for adding a custom task handler to the list of handlers
the agent runs for each resource request.

1. Place com.sun.identity.agents.arch.ServiceResolver on the classpath.

2. Add com.sun.identity.agents.arch.ServiceResolver to the bootstrap property Service Resolver Class
Name.

Example of a Custom Filter Result Task Handler

/*
 * Copyright 2019-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;
import com.sun.identity.agents.arch.Manager;
import com.sun.identity.agents.filter.AmFilterMode;
import com.sun.identity.agents.filter.AmFilterRequestContext;
import com.sun.identity.agents.filter.AmFilterResult;
import com.sun.identity.agents.filter.AmFilterResultHandler;

/**
 * This is an example of a custom filter result task handler
 */
@SuppressWarnings("unused")
public class CustomFilterResultTaskHandler extends AmFilterResultHandler {

 public CustomFilterResultTaskHandler(Manager manager) {
 super(manager);
 }

 @Override
 public boolean isActive() {
 return true;
 }

 @Override
 public String getHandlerName() {
 return "CustomFilterResultTaskHandler";
 }

 @Override
 public AmFilterResult process(AmFilterRequestContext context, AmFilterResult result) {

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 235

 String applicationName = Utils.getApplicationName(context);
 AmFilterMode amFilterMode = AgentConfiguration.getTheFilterMode(applicationName);
 HttpServletRequest request = context.getHttpServletRequest();

 logTrace("Hello from {}, application name {}, filter mode {}, {} {}, result {}",
 getHandlerName(), applicationName, amFilterMode,
 request.getMethod(), request.getRequestURI(),
 result.toString());

 // Must return the result parameter, unless you have a really good reason not to.
 return result;
 }
}

Example of a Custom Self-Redirect Task Handler

/*
 * Copyright 2019-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;
import com.sun.identity.agents.arch.AgentException;
import com.sun.identity.agents.arch.Manager;
import com.sun.identity.agents.filter.AmFilterMode;
import com.sun.identity.agents.filter.AmFilterRequestContext;
import com.sun.identity.agents.filter.AmFilterResult;
import com.sun.identity.agents.filter.AmFilterTaskHandler;
import com.sun.identity.agents.filter.IBaseAuthnContext;

/**
 * This is an example of a custom self-redirect task handler. It is essentially the same as the inbound
 task
 * handler.
 */
@SuppressWarnings("unused")
public class CustomSelfRedirectTaskHandler extends AmFilterTaskHandler {

 public CustomSelfRedirectTaskHandler(Manager manager) {
 super(manager);
 }

 @Override
 public void initialize(IBaseAuthnContext context) throws AgentException {
 super.initialize(context);

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 236

 }

 @Override
 public boolean isActive() {
 return true;
 }

 @Override
 public String getHandlerName() {
 return "Custom self redirect task handler";
 }

 @Override
 public AmFilterResult process(AmFilterRequestContext context) {

 String applicationName = Utils.getApplicationName(context);
 AmFilterMode amFilterMode = AgentConfiguration.getTheFilterMode(applicationName);
 HttpServletRequest request = context.getHttpServletRequest();

 logTrace("Hello from {}, application name {}, filter mode {}, {} {}",
 getHandlerName(), applicationName, amFilterMode,
 request.getMethod(), request.getRequestURI());

 // return null to continue to the other task handlers (until one returns a non null value)
 // return AmFilterResultStatus.STATUS_CONTINUE to grant access (continue to the next filter after
 the agent)
 // return AmFilterResultStatus.STATUS_REDIRECT to redirect somewhere else
 // return AmFilterResultStatus.STATUS_FORBIDDEN to deny access
 // return AmFilterResultStatus.STATUS_SERVE_DATA to serve up data to the browser
 // return AmFilterResultStatus.STATUS_SERVER_ERROR to abort the request with a 500 server error
 //
 return null;
 }
}

Example of a Custom Inbound Task Handler

/*
 * Copyright 2019-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;
import com.sun.identity.agents.arch.AgentException;
import com.sun.identity.agents.arch.Manager;
import com.sun.identity.agents.filter.AmFilterMode;
import com.sun.identity.agents.filter.AmFilterRequestContext;

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 237

import com.sun.identity.agents.filter.AmFilterResult;
import com.sun.identity.agents.filter.AmFilterTaskHandler;
import com.sun.identity.agents.filter.IBaseAuthnContext;

/**
 * This is an example of a custom inbound task handler
 */
@SuppressWarnings("unused")
public class CustomInboundTaskHandler extends AmFilterTaskHandler {

 public CustomInboundTaskHandler(Manager manager) {
 super(manager);
 }

 @Override
 public void initialize(IBaseAuthnContext context) throws AgentException {
 super.initialize(context);
 }

 @Override
 public boolean isActive() {
 return true;
 }

 @Override
 public String getHandlerName() {
 return "Custom inbound task handler";
 }

 @Override
 public AmFilterResult process(AmFilterRequestContext context) {

 String applicationName = Utils.getApplicationName(context);
 AmFilterMode amFilterMode = AgentConfiguration.getTheFilterMode(applicationName);
 HttpServletRequest request = context.getHttpServletRequest();

 logTrace("Hello from {}, application name {}, filter mode {}, {} {}",
 getHandlerName(), applicationName, amFilterMode,
 request.getMethod(), request.getRequestURI());

 // return null to continue to the other task handlers (until one returns a non null value)
 // return AmFilterResultStatus.STATUS_CONTINUE to grant access (continue to the next filter after
 the agent)
 // return AmFilterResultStatus.STATUS_REDIRECT to redirect somewhere else
 // return AmFilterResultStatus.STATUS_FORBIDDEN to deny access
 // return AmFilterResultStatus.STATUS_SERVE_DATA to serve up data to the browser
 // return AmFilterResultStatus.STATUS_SERVER_ERROR to abort the request with a 500 server error
 //
 return null;
 }
}

Example of How to Override the ServiceResolver Class

/*
 * Copyright 2019-2020 ForgeRock AS. All Rights Reserved
 *

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 238

 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
package com.sun.identity.agents.custom;

import java.util.ArrayList;
import java.util.List;

import com.sun.identity.agents.arch.ServiceResolver;

/**
 * This is an example of how to override the ServiceResolver class to provide your own custom task
 handlers. To use
 * this example class, place the following in the custom properties on the advanced tab in the Java Agents
 profile:
 * <p></p>
 *
 org.forgerock.agents.service.resolver.class.name=com.sun.identity.agents.custom.CustomServiceResolverExample
 * <p></p>
 * and restart the agent.
 */
@SuppressWarnings("unused")
public class CustomServiceResolverExample extends ServiceResolver {

 @Override
 public List<String> getPreInboundTaskHandlers() {
 List<String> result = new ArrayList<>();
 result.add(CustomInboundTaskHandler.class.getName());
 return result;
 }

 @Override
 public List<String> getPostInboundTaskHandlers() {
 return new ArrayList<>();
 }

 @Override
 public List<String> getPreSelfRedirectHandlers() {
 List<String> result = new ArrayList<>();
 result.add(CustomSelfRedirectTaskHandler.class.getName());
 return result;
 }

 @Override
 public List<String> getPostSelfRedirectHandlers() {
 return new ArrayList<>();
 }

 @Override
 public List<String> getPreFilterResultHandlers() {
 List<String> result = new ArrayList<>();
 result.add(CustomFilterResultTaskHandler.class.getName());
 return result;
 }

 @Override
 public List<String> getPostFilterResultHandlers() {
 return new ArrayList<>();

Reference
Implementing Custom Task Handlers

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 239

 }
}

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 240

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 241

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 242

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 243

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 244

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

User Guide Java Agents 5.7 (2020-12-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 245

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	User Guide
	Table of Contents
	Preface
	Chapter 1. Introducing Java Agents
	Java Agent Components
	Configuration
	Bootstrap Properties
	Changing configuration Properties

	Request Process Flow
	Java Agent Features
	Not-Enforced Lists
	Notification System
	Continuous Security
	Attribute Fetch Modes
	Autonomous "Fallback" Mode
	Login Attempt Limits
	FQDN Checking
	Cookie Reset Properties
	Cross-Domain Single Sign-On
	POST Data Preservation
	Redirection and Conditional Redirection
	Default Redirection Login Mode
	Custom Redirection Login Mode

	Caching Capabilities
	Query Parameter Handling
	Authentication Failure Notification

	Chapter 2. Preparing for Installation
	Downloading and Unzipping Java Agents
	Configuring AM Servers to Communicate With Java Agents
	Creating Agent Profiles
	Delegating Agent Profile Creation

	Supporting Load Balancers and Reverse Proxies Between AM and the Agents

	Chapter 3. Configuring Environments With Load Balancers and Reverse Proxies
	Regarding Communication Between AM and Agents
	Configuring AM to Use Forwarded Headers

	Regarding Communication Between Clients and Agents
	Matching Protected Java Container Ports, Protocols, and FQDNs
	Configuring Client Identification Properties
	Configuring POST Data Preservation for Load Balancers or Reverse Proxies

	Chapter 4. Installing Java Agents
	Installing the Tomcat Java Agent
	Before You Install
	Installing the Tomcat Java Agent
	Installing the Tomcat Java Agent Silently

	Installing the JBoss Java Agent
	Before You Install
	Installing the JBoss Java Agent
	Installing the JBoss Java Agent Silently

	Installing the Jetty Java Agent
	Before You Install
	Installing the Jetty Java Agent
	Installing the Jetty Java Agent Silently

	Installing the WebLogic Java Agent
	Before You Install
	Installing the WebLogic Java Agent
	Installing the WebLogic Java Agent Silently
	Installing the WebLogic Java Agent in Multi-Server Domains

	Installing the WebSphere Java Agent
	Before You Install
	Installing the WebSphere Java Agent
	Installing the WebSphere Java Agent Silently
	Notes About WebSphere Network Deployment

	Chapter 5. Post-Installation Tasks
	Configuring the Agent Filter
	Configuring the Agent Filter for an Application
	Configuring the Agent Filter's Modes of Operation

	Configuring Audit Logging
	Configuring Performance Monitoring
	Configuring Java Agents for SSL Communication
	Supporting Load Balancers and Reverse Proxies Between Clients and Agents

	Chapter 6. Upgrading Java Agents
	Chapter 7. Removing Java Agents
	Removing the Tomcat Java Agent
	Removing the JBoss Java Agent
	Removing the Jetty Java Agent
	Removing the WebLogic Java Agent
	Removing the WebSphere Java Agent

	Chapter 8. Troubleshooting
	Chapter 9. Reference
	Configuring Java Agent Properties
	About Java Agent Properties
	Property Aliases
	Property Types

	Configuring Bootstrap Properties
	Configuring Global Properties
	Profile Properties
	General Properties
	Debug and Metric Properties
	Audit Properties
	User Mapping Properties
	Fully Qualified Domain Name Checking Properties

	Configuring Application Properties
	Configuring SSO Properties
	Configuring AM Services Properties
	Configuring Miscellaneous Properties
	Locale Properties
	Port Check Processing Properties
	Bypass Principal List Properties
	Deprecated Agent Properties

	Configuring Advanced Properties
	Client Identification Properties
	Web Service Processing Properties
	Agent Properties
	JBoss Application Server Properties
	Cross-Site Scripting Detection Properties
	Fragment Relay
	POST Data Preservation Properties
	Custom Properties

	Configuring Agent Authenticators
	Monitoring Reference
	Monitoring Metric Types
	Monitoring Metrics
	Audit Handler Metrics
	Endpoint and REST SDK Metrics
	JSON Web Token (JWT) Metrics
	JVM Metrics
	Not Enforced Rule Metrics
	Policy Decision Metrics
	POST Data Preservation (PDP) Metrics
	Request Metrics
	Session Information Metrics
	SSO Token to JWT Exchange Metrics
	Websocket Metrics

	Command-Line Tool Reference
	agentadmin

	Configuring Apache HTTP Server as a Reverse Proxy Example
	Implementing Custom Task Handlers

	Glossary

